• Title/Summary/Keyword: s-glass fiber

Search Result 325, Processing Time 0.025 seconds

Effect of Stitching on Mechanical and Impact Properties of Glass Fiber Reinforced Composite (스티칭에 의한 유리섬유강화 복합재료의 물성 및 충격거동 변화)

  • Park, Jae-Yong;Kang, Tae-Jin;Yuk, Jong-Il
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.366-374
    • /
    • 1992
  • Mechanical and impact properties of stitched S2 glass fiber reinforced polyester woven laminates composites have been studied. Laminates were stitched using Kevlar 49 thread with 1/2, 1, and 2 inch stitch spacing. Tensile and 3-point bending tests haute been performed to evaluate the mechanical properties of stitched and unstitched laminates. Impact tests at applied energy of 234.7J were performed to examine the impact behavior and toughness changes of the specimen. The same specimens were also tested repeatedly at low impact energy level of 110.2J for 3 times to evaluate damage tolerance properties. The tensile and 3-point bending test results showed that one inch spacing specimen had the highest tensile and flexural strength. It also showed the highest energy absorption capability and the best damage tolerance property at the repeated impact test. The half inch spacing specimen showed the lowest tensile strength and energy absorption property at the impact energy level of 234.7J, even though it had the highest frequency of stitching thread.

  • PDF

An Experimental Study on Bond Characteristics of FRP Reinforcements with Various Surface-type (다양한 표면형상에 따른 FRP 보강재의 부착특성 실험연구)

  • Jung, Woo Tai;Park, Young Hwan;Park, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.279-286
    • /
    • 2011
  • FRP (Fiber Reinforced Polymer) tendons can be used as an alternative to solve the corrosion problem of steel tendons. Material properties of FRP tendons-bond strength, transfer length, development length-must be determined in order to apply to concrete structures. First of all, in case of application for pretension concrete members with CFRP tendons, transfer length is an important characteristic. The bond of the material characteristics should be demanded clearly to apply to PSC structures prestressed with FRP tendons. This paper investigated on the bond characteristics of FRP reinforcements with various surface-type. To determine the bond characteristics of FRP materials used in place of steel reinforcement or prestressing tendon in concrete, pull-out testing suggested by CAN/CSA S806-02 was performed. A total of 40 specimens were made of concrete cube with steel strands, deformed steel bar and 6 different surface shape FRP materials like carbon or E-glass. Results of the bonding tests presented that each specimen showed various behaviors as the bond stress-slip curve and compared with the bond characteristic of CFRP tendon developed in Korea.

Bond Capacity of Pseudo-Ductile FRP Hybrid Sheet to Strengthen RC Members (철근콘크리트 부재 보강용 유사연성 FRP 하이브리드 시트의 부착 특성)

  • Yoon, Hye-Sun;Lee, Jung-Mi;Lee, Chin-Yong;Choi, Dong-Uk;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • 12 concrete blocks, on which hybrid fibrous sheets (carbon fiber and glass fiber) had been bonded, were subjected to tensile load in order to estimate properties of the bonded interface. the sheet length was varied by 100mm, 200mm and 400mm. It was found that more than 150mm bond length is required to achieve the maximum bearing capacity of the interface. In this study, maximum bond stress $\tau_{F,max}$, ultimate slip $S_{FU}$ of the interface were estimated $\tau_{F,max}$=3.0MPa and $S_{FU}$= 0.175mm, respectively.

Temperature distribution behaviors of GFRP honeycomb hollow section sandwich panels

  • Kong, B.;Cai, C.S.;Pan, F.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.623-641
    • /
    • 2013
  • The fiber-reinforced polymer (FRP) composite panel, with the benefits of light weight, high strength, good corrosion resistance, and long-term durability, has been considered as one of the prosperous alternatives for structural retrofits and replacements. Although with these advantages, a further application of FRPs in bridge engineering may be restricted, and that is partly due to some unsatisfied thermal performance observed in recent studies. In this regard, Kansas Department of Transportation (DOT) conducted a field monitoring program on a bridge with glass FRP (GFRP) honeycomb hollow section sandwich panels. The temperatures of the panel surfaces and ambient air were measured from December 2002 to July 2004. In this paper, the temperature distributing behaviors of the panels are firstly demonstrated and discussed based on the field measurements. Then, a numerical modeling procedure of temperature fields is developed and verified. This model is capable of predicting the temperature distributions with the local environmental conditions and material's thermal properties. Finally, a parametric study is employed to examine the sensitivities of several temperature influencing factors, including the hollow section configurations, environmental conditions, and material properties.

Synthesis, Structure, and Thermal Property of Poly(trimethylene terephthalate- co-trimethylene 2,6-naphthalate) Copolymers

  • Jeong, Young-Gyu;Jo, Won-Ho;Lee, Sang-Cheol
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.245-251
    • /
    • 2004
  • Poly(trimethylene terephthalate-co-trimethylene 2,6-naphthalate)s (P(TT-co-TN)s) with various copolymer composition were synthesized, and their chain structure, thermal property and crystalline structure were investigated by using $^1$H-NMR spectroscopy, differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD), respectively. It was found from sequence analysis that all the P(TT-co-TN) copolymers synthesized have a statistical random distribution of TT and TN units. It was also observed from DSC thermograms that the glass transition temperature increases linearly with increasing the TN comonomer content, whereas the melting temperature of copolymer decreases with increasing the corresponding comonomer content in respective PTT- and PTN-based copolymer, showing pseudo-eutectic melting behavior. All the samples melt-crystallized isothermally except for P(TT-co-66 mol % TN) exhibit multiple melting endotherms and clear X-ray diffraction patterns. The multiple melting behavior originates from the dual lamellar population and/or the melting-recrystallization-remelting. The X-ray diffraction patterns are largely divided into two classes depending on the copolymer composition, i.e., PTT and PTN $\beta$-form diffraction patterns, without exhibiting cocrystallization.

The Importance of Size/scale Effect in the Failure of Composite Structures (복합재료 구조물의 파괴에 대한 치수효과의 중요성)

  • Kim, Duk-Hyun;Kim, Doo-Hwan
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.1-6
    • /
    • 2004
  • In this paper, the importance of the size effects on the strength ratio is demonstrated by numerical results. The rate of decrease of tensile strength is for glass fiber, based on the experience of a composite manufacturing specialist. For other material, similar procedure may be used until detailed test result on such material is available. The strength criterion used is that of Tsai-Wu fur stress space. The factors influencing the ratio are, reducing the tensile strength alone or both tensile and compression strengths, selection of the normalized interaction term, that is, the generalized von Mises criterion or the Hill's criterion, and the status of applied stresses. Some of the numerical results are presented for a guideline for the future study.

Development and Durability Evaluation of a Bimaterial Composite Frame by Pultrusion Process (인발성형 공정을 통한 이종재료 복합소재 프레임 개발 및 내구성 평가)

  • Lee, Haksung;Kang, Shinjae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.145-151
    • /
    • 2014
  • Recently, the growing demand for weight reduction and improved structure durabilityfor commercial vehicles has led to active research into the development and application of suitablecomposite materials. This studysuggests abimaterial composite frame produced by apultrusion process to replace steel frames. We focused on the development of a composite frameconsisting of two types of materialsby mixing anorthotropic material with anisotropic material. The inside layer consisted of an aluminum pipe, and the outside layer was composed of a glass fiber pipe. To determine the strength and failure mechanisms of the composite material, tensile tests, shear tests, and three-point bending tests were conducted, followed by fatigue tests. After static testing, the fatigue tests were conducted at a load frequency of 5 Hz, a stress ratio (R) of 0.1, and an endurance limit of $10^6$ for the S-N curve. The resultsshowed that the failure modes were related to both the core design and the laminating conditions.

A Study of Light Weight of Tie Rod End in Auto Supplies (자동차 타이로드 엔드 부품의 경량화에 관한 연구)

  • Kim, Y.S.;Kim, I.K.;Tark, J.H.;Kim, D.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.70-75
    • /
    • 1999
  • This study is for the development of tie rod end, a parts of steering system, that would be changed with plastic material. The position of weld line is founded by the analysis of Mold Flow, computer software with FEM(Finite Element Method). Then new mold is designed by consideration with the locations of weld line. PA66(G/F 35%), PA6(G/F 45%), PET(G/F 45%) and PET(G/F 55%) are tested two types loading conditions for selecting suitable material, the requirement tensile load(more 19600N). PA6(G/F 45%) showed high mechanical properties in this study. And then, tensile strength was compared between conventional metal products and the injection molded products which were reinforced with 33%, 34%, 45%. 60% of glass fiber in matrix material. In the case of, the measured two types of tensile load values are 24500N (Method-1), 21560N (Method-2) and weight is decreased by 50% of conventional one.

  • PDF

An Experimental Study on the Flexural Fatigue Behavior of Glass fiber Reinforced Plastec Pipes (유리섬유 보강 플라스틱관의 휨 피로 거동에 관한 실험적 연구)

  • Jang, Dong-Il;Go, Jae-Won
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.219-226
    • /
    • 1994
  • In the comparison result of residual strain calculated from the load-strain curve under the repeated loading cycles, it was found that the larger the laminates is, the larger the stiffness of GFRP pipes under fatigue load is. This phenomenon is true until the fatigue failure. According to the S-N curves drawn by the regression analysis on the fatigue test results, the fatigue strength for percentage of the static ultimate strength increases by increasing the laminates of GFRP pipes. The fatigue strength for 2, 000, 000 repeated loading cycles In GFRP pipes with the laminates varing 15, 25, 35 shows 75.2%, 79.5%, 84.2% on the static ultimate strength, respectively.

  • PDF

Electrical characteristics of insulating materials for HTS bushing immersed in $LN_2$

  • Choi, J.H.;Kim, W.J.;Shin, H.S.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.4
    • /
    • pp.10-13
    • /
    • 2011
  • For the operation of high temperature superconducting (HTS) power equipments, it is necessary to develop insulating materials and high voltage (HV) insulation technology at cryogenic temperature of bushing. In this paper, the surface flashover characteristics of various insulating materials in $LN_2$ are studied. These results are studied at both AC and impulse voltage under a non-uniform field. The negative impulse breakdown voltage of GFRP is slightly higher than the positive impulse breakdown voltage. The use of glass fiber reinforced plastic (GFRP) and polytetrafluoroethylene (PTFE, Teflon) as insulation body for HTS bushing should be much desirable. Especially, GFRP is excellent material not only surface flashover characteristics but also mechanical characteristics at cryogenic temperature. The surface flashover is most serious problem for the shed design in $LN_2$ and operation of superconducting equipment.