• Title/Summary/Keyword: s modulus tensile properties

Search Result 297, Processing Time 0.023 seconds

Hybrid Nanocomposites: Processing and Properties

  • Shi, Y.;Kanny, K.;Jawahar, P.
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.365-379
    • /
    • 2009
  • Epoxy/S2-glass reinforced composites (SGRPs) infused with Cloisite 30B nanoclays were manufactured using the vacuum assisted resin infusion molding (VARIM) process. Prior to infusion, the matrix and clays were thoroughly mixed using a direct mixing technique (DMT) and a high shear mixing technique (HSMT) to ensure uniform dispersion of the nanoclays. Structures with varying clay contents (1-3 wt%) were manufactured. Both pristine and SGRP nanocomposites were then subjected to mechanical testing. For the specimens manufactured by DMT, the tensile, flexural, and compressive modulus increased with increasing the clay content. Similarly, the tensile, flexural, compressive, interlaminate shear and impact strength increased with the addition of 1 wt% clay: however the trend reversed with further increase in the clay content. Specimens manufactured by HSMT showed superior properties compared to those of nanocomposites containing 1 wt% clay produced by DMT. In order to understand these phenomena a morphological study was conducted. Transmission electron microscopy (TEM) micrographs revealed that HSMT led to better dispersion and changed the nanoclay structure from orderly intercalation to disorderly intercalation giving multi-directional strength.

A Study on the Mechanical Properties and Biodegradation of PCL-MMT Nanocomposite (PCL-MMT 나노복합재료의 기계적 성질과 생분해에 관한 연구)

  • Choi, Hyun-Kuk;Lee, Young-Sei;Park, Jae-Kyeung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.1
    • /
    • pp.5-10
    • /
    • 2005
  • PCL were intercalated into organically modified MMT (PCL-MMT) at $80^{\circ}C$ for 4hrs to prepare the PCL-MMT nanocomposite. PCL-MMT and PCL were mixed mechanically with two-roll mill at $150^{\circ}C$ for 15mins. From the results of XRD and TEM, it were found that PCL-MMT nanocomposite were prepared. And mechanical properties and biodegradation of nanocomposite have been investigated by tensile meter and biodegradability analysis experiment. Because of MMT dispersed homogeneously in PCL matrix, the Young's modulus of the nanocomposite was found to be excellent. But the tensile strength and elongation were decreased as increase of MMT. And MMT dispersed in PCL matrix was almost not affected on the biodegradation of PCL.

  • PDF

Investigation of Tensile Behaviors in Open Hole and Bolt Joint Configurations of Carbon Fiber/Epoxy Composites

  • Dong-Wook Hwang;Sanjay Kumar;Dong-Hun Ha;Su-Min Jo;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.259-263
    • /
    • 2023
  • This study investigated the open hole tensile (OHT) properties of carbon fiber/epoxy composites and compared them to bolt joint tensile (BJT) properties. The net nominal modulus and strength (1376 MPa) were found to be higher than the gross nominal strength (1041 MPa), likely due to increasing hole size. The OHT and BJT specimens exhibited similar stiffness, as expected without bolt rotation causing secondary bending. OHT specimens experienced a sharp drop in stress indicating unstable crack propagation, delamination, and catastrophic failure. BJT specimens failed through shear out on the bolt side and bearing failure on the nut side, involving fiber kinking, matrix splitting, and delamination, resulting in lower strength compared to OHT specimens. The strength retention of carbon fiber/epoxy composites with open holes was 66%. Delamination initiation at the hole's edge caused a reduction in the stress concentration factor. Filling the hole with a bolt suppressed this relieving mechanism, leading to lower strength in BJT specimens compared to OHT specimens. Bolt joint efficiency was calculated as 15%. The reduction in strength in bolted joints was attributed to fiber-matrix splitting and delamination, aligning with Hart Smith's bolted joint efficiency diagram. These findings contribute to materials selection and structural reliability estimation for carbon fiber/epoxy composites. They highlight the behavior of open hole and bolt joint configurations under tensile loading, providing valuable insights for engineering applications.

A Study on Mechanical Strength in AI7075/CFRP Hybrid Composite (AI7075/CFRP 하이브리드 복합재료의 기계적강도 평가에 관한 연구)

  • 유재환
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.57-62
    • /
    • 1997
  • The combined structure of hybrid composite made through the bonding process of materials of different properties greatly defines its mechanical characteristics, as the results of the experiments on materials of different properties show much dissimilarity. When carbon/epoxy materials are applied to hybrid composite, the carbon materials helps to improve the mechanical properties of the hybrid composite, and the epoxy reduces its fracture strain and impact resistance. Carbon fiber which is now in general commercialization is classified as high modulus or high strength system, and its manufacturing methods are various. The study of the materials having combined structure is focused on the numerical analysis of the layers of bonding surface in materials with difference modulus. The hybrid composite made through the multilayered bonding of reinforced aluminium sheets with aramid fiber now faces the marketing phase, and especially its excellent fatigue resistance and mechanical properties promote active researches on the similar products of hybrid composite. This study aims to investigate the effects of CFRP volume ratio and fiber's orientation over the properties of mechanical strength and fatigue life of the hybrid composite, AI7075/CFRP. To carry out this study, static tensile and fatigue tests were given to some of the panels which, made through the co-cure processing in an autoclave, have different CFRP volume ratio and carbon fiber orientations.

  • PDF

Study on material properties of $Cu-TiB_2$ nanocomposite ($Cu-TiB_2$ 나노 금속복합재의 물성치에 대한 연구)

  • Kim Ji-Soon;Chang Myung-Gyu;Yum Young-Jin
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.28-34
    • /
    • 2006
  • [ $Cu-TiB_2$ ] metal matrix composites with various weight fractions of $TiB_2$ were fabricated by combination of manufacturing process, SPS (self-propagating high-temperature synthesis) and SPS (spark plasma sintering). The feasibility of $Cu-TiB_2$ composites for welding electrodes and sliding contact material was investigated through experiments on the tensile properties, hardness and wear resistance. To obtain desired properties of composites, composites are designed according to reinforcement's shape, size and volume fraction. Thus proper modeling is essential to predict the effective material properties. The elastic moduli of composites obtained by FEM and tensile test were compared with effective properties from the original Eshelby model, Eshelby model with Mori-Tanaka theory and rule-of-mixture. FEM result showed almost the same value as the experimental modulus and it was found that Eshelby model with Mori-Tanaka theory predicted effective modulus the best among the models.

Effect of granite fines on mechanical and microstructure properties of concrete

  • Jain, Kishan Lal;Sancheti, Gaurav
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.461-470
    • /
    • 2022
  • Solid waste management is of great concern in today's world. An enormous amount of waste is generated from various industrial activities. Concrete production utilizing some of the potential waste materials will add to the benefit of society. These benefits will include reduction of landfill burden, improved air quality, riverbed protection due to excessive sand excavation, economical concrete production and much more. This study aims to utilize waste granite powder (GP) originating from granite industries as a sand replacement in concrete. Fine GP was collected in the form of slurry from different granite cutting industries. In this study, GP was added in an interval of ten percent as 10%, 20%, 30%, 40% and 50% by weight of sand in concrete. Mechanical assets; compressive strength, flexural strength and splitting tensile strength were prominent for control and blended mixes. Modulus of elasticity (MoE) and abrasion tests were also performed on control and blended specimens of concrete. To provide a comprehensive clarification for enhanced performance of GP prepared concrete samples, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed. Results indicate that 30% replacement of sand by weight with GP enhances the mechanical assets of concrete and even the results obtained for 50% replacement are also acceptable. Comprehensive analysis through SEM and XRD for 30% replacement was better than control one. The performance of GP added to concrete in terms of abrasion and modulus of elasticity was far better than the control mix. A significant outcome shows the appropriateness of granite fines to produce sustainable and environmentally friendly concrete.

The role of internal architecture in producing high-strength 3D printed cobalt-chromium objects

  • Abdullah Jasim Mohammed;Ahmed Asim Al-Ali
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.2
    • /
    • pp.91-104
    • /
    • 2024
  • PURPOSE. The objectives of the current study were to estimate the influence of self-reinforced hollow structures with a graded density on the dimensional accuracy, weight, and mechanical properties of Co-Cr objects printed with the direct metal laser sintering (DMLS) technique. MATERIALS AND METHODS. Sixty-five dog-bone samples were manufactured to evaluate the dimensional accuracy of printing, weight, and tensile properties of DMLS printed Co-Cr. They were divided into Group 1 (control) (n = 5), Group 2, 3, and 4 with incorporated hollow structures based on (spherical, elliptical, and diamond) shapes; they were subdivided into subgroups (n = 5) according to the volumetric reduction (10%, 15%, 20% and 25%). Radiographic imaging and microscopic analysis of the fractographs were conducted to validate the created geometries; the dimensional accuracy, weight, yield tensile strength, and modulus of elasticity were calculated. The data were estimated by one-way ANOVA and Duncan's tests at P < .05. RESULTS. The accuracy test showed an insignificant difference in the x, y, z directions in all printed groups. The weight was significantly reduced proportionally to the reduced volume fraction. The yield strength and elastic modulus of the control group and Group 2 at 10% volume reduction were comparable and significantly higher than the other subgroups. CONCLUSION. The printing accuracy was not affected by the presence or type of the hollow geometry. The weight of Group 2 at 10% reduction was significantly lower than that of the control group. The yield strength and elastic modulus of the Group 2 at a 10% reduction showed means equivalent to the compact objects and were significantly higher than other subgroups.

A Study of the Effect of Degree of Cure on the Physical Properties of Rubber Compounds (가교정도에 따른 고무복합체의 물리적 특성에 관한 연구)

  • Kim, Hyeon-Jae;Kaang, Shin-Young;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.281-289
    • /
    • 1998
  • Tensile properties including Young's modulus and tear strength were measured for four different rubber compounds; natural rubber(NR), styrene-butadiene copolymer(SBR), ethylene-propylene diene monomer (EPDM), and brominated isobutylene-p-methyl-styrene copolymer(BIMS) as a function of temperature and degree of cure. To see the effect of over cure, a measurement was made of the tensile strength and swelling behavior of the over-cured rubber compounds. Young's modulus, E, was found to have linear dependency on the degree of cure for all rubber compounds. EPDM and BIMS showed the highest and lowest slopes, respectively. The slope of NR and SBR lay between EPDM and BIMS. Tear strength, Gc, decreased in the order of NR>BIMS>SBR>EPDM. As the cure time was extended the degree of cure of NR and SBR decreased, while that of BIMS increased. EPDM showed little change in the degree of cure.

  • PDF

Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts

  • Kim, Dave Dae-Wook;Hennigan, Daniel John;Beavers, Kevin Daniel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • Polymer composite materials offer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic (GFRP) composites is presented. Fabrication techniques investigated during this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented dining composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results.

Grain Size Effect on Mechanical Properties of Polycrystalline Graphene

  • Park, Youngho;Hyun, Sangil;Chun, Myoungpyo
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.375-378
    • /
    • 2016
  • Characteristics of nanocrystalline materials are known substantially dependent on the microstructure such as grain size, crystal orientation, and grain boundary. Thus it is desired to have systematic characterization methods on the various nanomaterials with complex geometries, especially in low dimensional nature. One of the interested nanomaterials would be a pure two-dimensional material, graphene, with superior mechanical, thermal, and electrical properties. In this study, mechanical properties of "polycrystalline" graphene were numerically investigated by molecular dynamics simulations. Subdomains with various sizes would be generated in the polycrystalline graphene during the fabrication such as chemical vapor deposition process. The atomic models of polycrystalline graphene were generated using Voronoi tessellation method. Stress strain curves for tensile deformation were obtained for various grain sizes (5~40 nm) and their mechanical properties were determined. It was found that, as the grain size increases, Young's modulus increases showing the reverse Hall-Petch effect. However, the fracture strain decreases in the same region, while the ultimate tensile strength (UTS) rather shows slight increasing behavior. We found that the polycrystalline graphene shows the reverse Hall-Petch effect over the simulated domain of grain size (< 40 nm).