• Title/Summary/Keyword: ruthenium

Search Result 323, Processing Time 0.029 seconds

Counter Ion Effect on Photoinduced Electron Transfer Reaction between Ruthenium Complexes

  • Sonoyama, Noriyuki;Kaizu, Youkoh
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.481-486
    • /
    • 1995
  • Quenching experiments by photoinduced electron transfer between a charged donor and a neutral acceptor were carried out in acetonitrile, dichloromethane and mixed solvents of acetonitrile and dichloromethane. Tris(2, 2'-bipyridine) ruthenium(II) ($[Ru(bpy)_3]^{2+}$) which has 2+ charge and dicyanobis (2, 2'-bipyridine) ruthenium(II) ($Ru(bpy)_2(CN)_2$) which has no charge were used as electron donors, and a series of tris(${\beta}$-diketonato) ruthenium (III) was used as acceptor. In dichloromethane, $[Ru(bpy)_3]^{2+}$ and its counter ions ($ClO{_4}^-$) form ion pair. In the estimate of ${\Delta}G$ of electron transfer, the electrostatic potential between counter ions and product ion pair produced by electron transfer must be taken into account. A similar effect of counter ions was found in mixed solvents of 10, 30, 50, 70 and 90% acetonitrile ratio in volume. The effect of counter ion on ${\Delta}G$ became smaller with the increase in acetonitrile ratio. The result in mixed solvents suggests that $[Ru(bpy)_3]^{2+}$ and its counter ions form ion pair even in 90% acetonitrile solution.

  • PDF

Microwave-mediated Asymmetric Hydrogen Transfer by SBA-15-supported Ruthenium Catalyst (SBA-15 실리카에 고정화된 ruthenium 촉매를 사용한 Microwave하에서의 비대칭 수소 전달반응)

  • Jin, Myung-Jong;Jun, In-Chul
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.752-755
    • /
    • 2008
  • Mesoporous SBA-15 silica-supported TsCHDA and TsDPEN ligands have been prepared by reaction of SBA-15 silica with (1R,2R)-N-(trimethoxysilylpropyl-N-sulfonyl)-1,2-cyclohaxanediamine or (1R,2R)-N-(trimethoxysilylpropyl-N-sulfonyl)-1,2-diphenylethylenediamine-1,2-diphenylethylenediamine, respectively. The Ru complexes exhibited excellent catalytic activity and satisfactory enantioselectivity in the asymmetric hydrogen transfer of ketones under microwave conditions. The heterogeneous Ru catalyst was reusable as well as air-stable to allow easy use. Microwave-assisted efficient procedure has been developed for asymmetric hydrogen transfer.

Effect of Potassium Promoter on the Adsorption of Carbon Monoxide on Silica Supported Ruthenium

  • Lee, Jo-Woong;Chang, Sei-Hun;Pak, Hyung-Suk;Shin, Kook-Joe;Kim, Myung-Kun;Chung, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.137-143
    • /
    • 1988
  • We have investigated the infrared spectra for carbon monoxide chemisorbed on silica supported ruthenium with and without potassium coating within the frequency range of 1800-2200 $cm^{-1}$ at various ruthenium concentrations and CO pressures. For the system without potassium coating, three bands were observed in the infrared spectra when CO was adsorbed on both the reduced and oxidized form of supported ruthenium. However, the relative intensities of these three bands were found to have no interdependence. Therefore, we have assigned each of these bands as arising from the CO stretching vibration for carbon monoxide molecules adsorbed on the Ru sites of different nature. On coating with potassium, the 2030 $cm^{-1}$ band observed for the system without potassium coating was found to suffer red shift by 10-30 $cm^{-1}$ and we conclude that this bathochromic shift is caused by enhancement in the capability of back donation of electrons from the metal atom to the antibonding ${\pi}{\ast}$ orbitals of CO due to the presence of potassium.

Simple and Selective Flow Injection Catalytic Determination of Ruthenium with Spectrophotometric Detection (분광광도 검출법으로 간단하고 선택적인 흐름주입촉매법에의한 루테늄 정량)

  • Rezaei, Behzad;Majidi, Najmeh
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.147-153
    • /
    • 2007
  • A simple, selective and highly sensitive flow injection catalytic method was presented for determination of ruthenium based on its catalytic effect on the oxidation of pyronin B by periodate in pH=1.0. The reaction rate is controlled specrophotometricaly by monitoring the dye absorbance at 555 nm. The optimized conditions make it possible to determine ruthenium in the ranges of 0.1-10.0 ng/mL (r2=0.9982) and 10.0-50.0 ng/mL (r2=0.9934) with a detection limit of 0.04 ng/mL and a sample rate of 30±5 samples/h. Relative standard deviation for the results of five replicate measurements does not exceed 1.44%. The proposed method has been successfully applied for quantitation of ultra trace amounts of ruthenium in some environmental and biological samples.

First-Principles Analysis of Nitrogen Reduction Reactions on Ruthenium Catalyst Surfaces for Electrochemical Ammonia Synthesis (전기화학적 암모니아 합성을 위한 루테늄 촉매 표면에서의 질소 환원반응 메커니즘 해석의 위한 제1원리 모델링)

  • Mihyeon Cho;Sangheon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.598-603
    • /
    • 2023
  • Electrochemical ammonia production using catalysts offers a promising alternative to the conventional Haber-Bosch process, allowing for ambient temperature and pressure conditions, environmentally friendly operations, and high-purity ammonia production. In this study, we focus on the nitrogen reduction reactions occurring on the surfaces of ruthenium catalysts, employing first-principles calculations. By modeling reaction pathways for nitrogen reduction on the (0001) and (1000) surfaces of ruthenium, we optimized the reaction structures and predicted favorable pathways for each step. We found that the adsorption configuration of N2 on each surface significantly influenced subsequent reaction activities. On the (0001) surface of ruthenium, the end-on configuration, where nitrogen molecules adsorb perpendicularly to the surface, exhibited the most favorable N2 adsorption energy. Similarly, on the (1000) surface, the end-on configuration showed the most stable adsorption energy values. Subsequently, through optimized hydrogen adsorption in both distal and alternating configurations, we theoretically elucidated the complete reaction pathways required for the final desorption of NH3.

Kinetics and Mechanism of Ruthenium(III) Catalyzed Oxidation of Butanone and Uncatalyzed Oxidation of Cychlohexanone by Cerium(IV) in Acid Sulphate Medium

  • Sharma, Priyamvada;Hemkar, Shalini;Khandelwal, C.L.;Sharma, P.D.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.28-33
    • /
    • 2012
  • The kinetics of ruthenium(III) chloride catalyzed oxidation of butanone and uncatalyzed oxidation of cyclohexanone by cerium(IV) in sulphuric acid medium have been studied. The kinetic rate law(I) in case of butanone conforms to the proposed mechanism. $$-\frac{1}{2}\frac{d[Ce^{IV}]}{dt}=\frac{kK[Ru^{III}][butanone]}{1+K[butanone]}$$ (1). However, oxidation of cyclohexanone in absence of catalyst accounts for the rate eqn. (2). $$-\frac{1}{2}\frac{[Ce^{IV}]}{dt}=\frac{(k_1+k_1K^'[H^+])[Ce^{IV}][Cyclohexanone]}{1+K_3[HSO_4^-]}$$ (2) Kinetics and activation parameters have been evaluated conventionally. Kinetically preferred mode of reaction is via ketonic and not the enolic forms.

Electrochemistry of Tris(2,2'-bipyridyl)Ruthenium(II)-Sodium Dodecyl Sulfate in 300 mM $H_2SO_4$ Solution

  • Ko, Young Chun
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.24-27
    • /
    • 2009
  • Electrochemistry of 1.0 mM tris(2,2'-bipyridyl)ruthenium(II) ($Ru(bpy)_3{^{2+}}$) in 300 mM $H_2SO_4$ solution with and without sodium dodecyl sulfate (SDS) is studied. In the presence of SDS, $E_{pa}$ of $Ru(bpy)_3{^{2+}}$ shifts to positive direction compared to the SDS free case. The intersection of two lines on ${\Delta}E_p$ vs. -log[SDS] plot is measured as a critical micelle concentration (CMC), which is 3.67 mM SDS.

  • PDF