• 제목/요약/키워드: rupture zone

검색결과 72건 처리시간 0.023초

슬래브와 구조특성을 고려한 철골 모멘트 접합부의 지진거동 (Seismic Behavior of Steel Moment Connections with a Slab and Different Structural Characteristics)

  • 조창빈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.200-207
    • /
    • 2003
  • The seismic behaviors of steel moment connections are investigated based on the numerical analysis of the connections with US and Japanese typical details. The rupture index, representing the fracture potential, is used to evaluate the ductility of the connections at the critical location. The results show that the presence of a slab increases the beam strength, imposes constraint near the beam top flange, and consequently, induces concentrated deformation near the beam access hall, which reduces the ductility of the connection. The total deformation capacity of the connection depends not only on a beam but also on a column and panel zone.

  • PDF

Creep and creep crack growth behaviors for base, weld, and heat affected zone in a grade 91 weldment

  • Kim, Woo-Gon;Sah, Injin;Kim, Seon-Jin;Lee, Hyeong-Yeon;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.572-582
    • /
    • 2021
  • This study investigated the creep and creep crack growth (CCG) behavior of the base metal (BM), weld metal (WM), and heat affected zone (HAZ) in a Gr. 91 weldment, which was made by a shield metal arc weld process. A series of tensile, creep, and CCG tests were performed for the BM, WM, and HAZ at 550 ℃. Creep behavior of the BM, WM, and HAZ was analyzed in terms of various creep laws; Norton's power-law, Monkman-Grant relation and damage tolerance factor (λ), and their constants were determined. In addition, each CCGR law for the BM, WM, and HAZ was proposed and compared in terms of a C*-fracture parameter. The WM and HAZ revealed faster creep rate, lower rupture ductility, and faster CCGRs than the BM, but they showed a similar behavior in the creep and CCG. The CCGRs obtained in the present study exhibited a marginal difference when compared with those of RCC-MRx of currently elevated design code in France. A creep crack path in the HAZ plane progressed towards a weak fine-grained HAZ adjacent to the BM.

Experimental study on propagation behavior of three-dimensional cracks influenced by intermediate principal stress

  • Sun, Xi Z.;Shen, B.;Zhang, Bao L.
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.195-202
    • /
    • 2018
  • Many laboratory experiments on crack propagation under uniaxial loading and biaxial loading have been conducted in the past using transparent materials such as resin, polymethyl methacrylate (PMMA), etc. However, propagation behaviors of three-dimensional (3D) cracks in rock or rock-like materials under tri-axial loading are often considerably different. In this study, a series of true tri-axial loading tests on the rock-like material with two semi-ellipse pre-existing cracks were performed in laboratory to investigate the acoustic emission (AE) characteristics and propagation characteristics of 3D crack groups influenced by intermediate principal stress. Compared with previous experiments under uniaxial loading and biaxial loading, the tests under true tri-axial loading showed that shear cracks, anti-wing cracks and secondary cracks were the main failure mechanisms, and the initiation and propagation of tensile cracks were limited. Shear cracks propagated in the direction parallel to pre-existing crack plane. With the increase of intermediate principal stress, the critical stress of crack initiation increased gradually, and secondary shear cracks may no longer coalesce in the rock bridge. Crack aperture decreased with the increase of intermediate principal stress, and the failure is dominated by shear fracturing. There are two stages of fracture development: stable propagation stage and unstable failure stage. The AE events occurred in a zone parallel to pre-existing crack plane, and the AE zone increased gradually with the increase of intermediate principal stress, eventually forming obvious shear rupture planes. This shows that shear cracks initiated and propagated in the pre-existing crack direction, forming a shear rupture plane inside the specimens. The paths of fracturing inside the specimens were observed using the Computerized Tomography (CT) scanning and reconstruction.

The Importance of Corrosion Control and Protection Technology in the Refinery

  • Kim, Byong Mu;Oh, Sung Lyong
    • Corrosion Science and Technology
    • /
    • 제6권3호
    • /
    • pp.112-119
    • /
    • 2007
  • This paper presents the importance of corrosion control and protection technology with a real case study of heater tube rupture damaged by High temperature H2S-H2 corrosion in the refinery. The heater was operated at the Hydrocracking unit and the operation temperature and pressure was $340^{\circ}C$ and $18kg/cm^{3}$ respectively. Top side of the convection tube was thinned by high temperature hydrogen sulfide and hydrogen gas as a uniform corrosion and finally ruptured under operation pressure. Damaged area (Convection tube zone) was blocked by protection wall, so it was impossible to inspect with conventional nondestructive examination. Instead the elbow area which is out of the protection wall was inspected regularly to evaluate the corrosion rate of convection tube indirectly. However the operation temperature and the phase of the process stream was different between inside the chamber and outside the chamber. As a result, it caused severe corrosion to the horizontal convection tube inside the chamber comparing to the elbow outside the chamber. Finally convection tube was corroded more rapidly than the elbow and ruptured after 13 years operation. Because of the rupture, the heater was totally burned and the operation was stopped for 3 months until it has been reconstructed. To prevent this kind of corrosion problem and accident, corrosion control should be strengthened and protection technology should be improved.

용접부의 고온 재료물성에 대한 실험적 연구 (An Experimental Study on High Temperature Material Properties of Welded Joint)

  • 백운봉;윤기봉;서창민;이해무
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.3096-3103
    • /
    • 2000
  • High temperature material properties of a welded joint were experimentally studied. Tensile and creep properties were measured for each part of weld metal. HAZ(heat affected zone) and parent metal at 538$^{\circ}C$. HAZ metal was obtained by a simulated heat treatment. Results showed that the order of tensile strength is weld>HAZ> parent both at 24$^{\circ}C$ and at 538$^{\circ}C$. Creep resistance was also the highest for weld metal and lowest for parent metal. Creep rupture life curves were obtained and converted to Monkman-Grant relation which is useful for life assessment. Use of the data obtained in this study is discussed.

철도사면파괴 원인 및 대책공법 적용을 위한 강도정수 결정 (Cause of Rall Road Slope Failure and Determination of Soil Strength for Remedy)

  • 이승현;김병일
    • 한국방재학회 논문집
    • /
    • 제4권3호
    • /
    • pp.25-31
    • /
    • 2004
  • 철도사면은 예상치 못한 연약지반의 존재로 인해 붕괴될 수 있다. 이 연구는 철도사면의 파괴원인을 규명하고 대책공법 적용을 위한 강도정수를 결정하는데 그 목적이 있다. 사면파괴의 원인을 파악하기 위하여 시추조사, 콘관입시험, 현장베인시험 등이 수행되었다. 또한 연약지반의 강도정수를 구하기 위해 불교란상태로 시료를 채취하여 실내시험을 수행하였다. 현장원위치시험 및 실내시험 결과 사면 파괴의 원인은 과압밀점토의 점진적 파괴에 따른 연약지반 강도저하영역의 전파에 기인한 것으로 밝혀졌다.

개구부에 삽입한 수직평판이 헬륨.공기치환류에 미치는 영향 (Effect of Partition within Opening on Helium-Air Exchange Flow)

  • Tae-il Kang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권6호
    • /
    • pp.797-805
    • /
    • 2003
  • This paper describes experimental investigations of helium-air exchange flow through single opening and partitioned opening. Such exchange flows may occur following rupture accident of stand pipe in high temperature gas cooled reactor. A test vessel with a small opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed and applied to measure the exchange flow rate. A technique of flow visualization by Mach-Zehnder interferometer is provided to recognize the exchange flows. Flow measurements are made with the opening, for partition ratios H_p/H$_1$$ in the range 0 to 1. where H_p$ and H$_1$ are partition length and height of the opening. respectively. In the case of H_p/H$_1$$ of 0, flow passages of upward flow of the helium and downward flow of the air within the opening are unseparated (bidirectional), and the two flows interfere within the opening. The unseparated flow increases strength of flow resistance and therefore, the exchange flow rate is minimum through range of the partition ratios. Two flow zones, i.e., separated (unidirectional) flow zone and unseparated (bidirectional) flow zone, exist with increasing the partition length. The exchange flow rate increases with increasing the separated flow zone. It is found that a maximum exchange flow rate exists at H_p/H$_1$$ of 1. As a result of comparison of the exchange flow rates by changing the partition ratio, the fluids Interference in the unseparated zone is found to be an important factor on the helium-air exchange flow rate.

개구부 삽입부의 길이가 헬륨 및 공기의 치환류에 미치는 영향 (Effect of Opening Partition Length on Helium-Air Exchange Flow)

  • 강태일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.192-200
    • /
    • 1999
  • This paper describes experimental investigations of helium-air exchange flow through parti-tioned opening. Such exchange flow may occur following rupture accident of stand pipe in high temperature gas cooled reactor. A test vessel with a opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed and applied to measure the exchange flow rate. A technique of flow visualization by Mach-Zehnder interferometer is provided to recognize the exchange flows. Flow measurements are made with partitioned opening for parti-tion rations $H_p/H_1$ in the range 0 to 1 where $H_p$ and $H_1$ are partition length and height of the open-ing respecticely. In the case of $H_p/H_1$ of 0 flow passages of upward flow of the helium and down-ward flow of the air within the opening are unseparated (bidirectional) and the two flows interact exchange flow rate is minimum through range of the partition ratios, Two flow zones i.e. separat-ed(unidirectional)flow zone and unseparated(bidirectional) flow zone exist with increasing the partition. length, The exchange flow rate increases with increasing the separated flow zone. It is found that a maximum exchange flow rate exists at $H_p/H_1$ of 1. As a result fo comparison of the exchange flow rates by changing the partition ration the fluids interaction in the unseparated zone is found to be an important factor on the helium-air exchange flow rate.

  • PDF

해수환경중 캐비테이션 침식-부식 하에서의 응력부식균열 거동 (II) (Stress Corrosion Cracking Behavior under Cavitation Erosion-Corrosion in Sea Water-Part (II))

  • 안석환;임우조
    • 수산해양기술연구
    • /
    • 제36권2호
    • /
    • pp.139-146
    • /
    • 2000
  • Cavitation can occur in pipes when liquid is moving at high velocity, especially at pittings where the smooth bore of the pipe is interrupted. The effect is usually to produce pitting on the downstream side of the turbulence. However, stress corrosion cracking behavior under cavitation erosion-corrosion was neatly unknown. In this study, therefore, some were investigated of stress corrosion cracking behavior, others were stress corrosion cracking behavior under cavitation erosion-corrosion of water injection. And datas obtained as the results of experiment were compared between the two. Mainresult obtained are as follows: 1) Stress corrosion cracking growth rate of heat affected zone under cavitation erosion-corrosion becomes most rapid, and stress intensity factor $K_1$becomes most high. 2) Stress corrosion cracking growth mechanism by cavitation erosion-corrosion is judgement on the strength of the film rupture model and the tunnel model. 3) The range of potential as passivation of heat affected zone is less noble than that of base metal, and that value is smaller. 4) Corrosion potential under cavitation erosion-corrosion in loaded stress is less noble than that of stress corrosion, and corrosion current density is higher.

  • PDF

손상된 CrMoV 터빈로터강의 보수용접에서 후열처리 온도에 따른 열영향부의 특성 (A Characteristics of Heat Affected Zones in Weld Repair for a Damaged CrMoV Turbine Rotor Steel)

  • 김광수;오영근;안병국
    • Journal of Welding and Joining
    • /
    • 제14권4호
    • /
    • pp.89-98
    • /
    • 1996
  • This study was performed to establish the characteristics of the heat affected zones from view point of the repair weldability for a damaged CrMoV steam turbine rotor steel. Characterization of the heat affected zones of the weldment was conducted with respect to various of postweld heat treatment temperatures, $566^{\circ}C$, $621^{\circ}C$ and $677^{\circ}C$. The evaluations of the heat affected zones were carried out in terms of microstructural characterization, microhardness measurements, Charpy v-notch impact, tensile and stress-rupture tests. The results indicated that the effect of the postweld heat treatment at $677^{\circ}C$ exhibited the favorable microstructure and mechanical properties for the stability of the heat affected zones. While the heat affected zone of the weldment, produced without postweld heat treatment, displayed the inferior toughness and microstructure indicating localized carbide precipitations on the grain boundary. It was also indicated that the stability of the heat affected zones were deteriorated by the formation of the cavitation on the grain boundaries.

  • PDF