• Title/Summary/Keyword: rupture zone

Search Result 72, Processing Time 0.026 seconds

Effect of HAZ Softening Zone on Creep Rupture Properties of 1.0Cr-1.0Mo-0.25V Turbine Rotor Steels - Part I : Creep Rupture Life- (1.0Cr-1.0Mo-0.25V 터어빈 로터강의 열영향부 연화층이 크립 파단 특성에 미치는 영향 -Part I : 크립 파단 수명 -)

  • ;Indacochea, J. E.
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.92-100
    • /
    • 1997
  • Weld repair of ASTM A-470 class 8 high pressure (HP) steam turbine rotor steel has been performed to extend the service life of older fossil units. Microhardness measurements were conducted across the weldment from unaffected base metal (BM) to weld metal (WM). The hardness of the BM was VHN 253, however it dropped up to VHN 227 at the heat affected zone (HAZ) close to unaffected BM for multipass SAW. This area of hardness drop is called "siftening zone" and has a width of 0.5-0.6mm. During creep rupture test, failure occurred around the softening zone and rupture time was 772.4hr at 19Ksi (132 Mpa) and 593.deg. C. Multipass MIG and TIG welding have been employed to reduce the softening zone width. The softening zone width for MIG was 0.3-0.4mm and for TIG was zero-0.4mm depending on heat inputs. However creep rupture time was decreased as softening zone width reduced. Creep rupture time also showed a close relationship with heat inputs in TIG process. The higher heat input, the longer rupture time. Most failure occurred at intercritical HAZ (ICHAZ), however rupture location was shifted to coarse grained HAZ (CGHAZ) as heat input decreased. The rupture surface showed tearing and dimple which indicated transgranular fracture. fracture.

  • PDF

Correlation between a Rupture of the Hypovascular Zone and Early Single Heel Raising after Achilles Tendon Repair (아킬레스건 봉합술 후 조기 단일 하지 거상과 아킬레스건 허혈성 구간 침범과의 상관관계)

  • Song, Si-Jung;Lee, Moses;Shin, Myung Jin;Suh, Jin Soo
    • Journal of Korean Foot and Ankle Society
    • /
    • v.22 no.1
    • /
    • pp.21-25
    • /
    • 2018
  • Purpose: To analyze the correlation between a rupture of the hypovascular zone and early single heel raising after Achilles tendon repair. Materials and Methods: From January 2012 to August 2015, 68 patients, who underwent surgical treatment for a Achilles tendon rupture using Krackow method, were analyzed retrospectively. The patients were divided into two groups according to possibility of single heel raises within 3 months postoperatively. During the periodic outpatient observations, the visual analogue scale, Achilles tendon total rupture score (ATRS), and timing capable single heel raises were evaluated. In addition, the preoperative defect size and distance between the calcaneal osteotendinous junction and the rupture site were measured by ultrasound in all cases. Results: Twenty-three patients could perform a single heel raise within 3 months after surgery (early single heel raise group), and fortyfive patients could perform a single heel raise after 3 month postoperatively. The age, gender, body mass index, smoking, and operation delay were similar in the two groups. In addition, the defect size and distance between the calcaneal osteotendinous junction and rupture site as measured by preoperative ultrasound were similar (p=0.379 and p=0.631, respectively). On the other hand, when the rupture site was divided into the hypovascular zone (4~7 cm from calcaneal osteotendinous junction) and non-hypovascular zone, the hypovascular zone rupture rate was significantly lower in the early single heel raise group (60.9%, 14/23; 91.1%, 41/45; p=0.003). In logistic regression analysis, the odds of the hypovascular zone rupture group being capable of early single heel raise were 0.189 (p=0.017). The ATRS score at 3 months and 1 year after surgery were significantly higher in the early single heel raise group (p<0.001). Conclusion: Achilles tendon rupture at the hypovascular zone is a poor prognostic factor for early single heel raise and might affect the prognosis significantly after an Achilles tendon rupture operation.

PWHT Cracking Susceptibility in the Weld Heat-Affected Zone of Reduced Activation Ferritic/Martensitic Steels (핵융합로 구조용 저방사화강의 용접열영향부 후열처리 균열 감수성)

  • Lee, Jinjong;Moon, Joonoh;Lee, Chang-Hoon;Park, Jun-Young;LEE, Tae-Ho;Hong, Hyun-Uk;Cho, Kyung-Mox
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.47-54
    • /
    • 2016
  • Post-Weld Heat Treatment (PWHT) cracking susceptibility in the weld heat-affected zone (HAZ) of reduced activation ferritic-martensitic (RAFM) steels was evaluated through stress-rupture tests. 9Cr-1W based alloys including different C, Ta and Ti content were prepared. The coarse grained heat-affected zone (CGHAZ) samples were simulated with welding condition of 30 kJ/cm heat input. CGHAZ samples consisted of martensite matrix. Stress rupture experiments were carried out using a Gleeble simulator at temperatures of $650-750^{\circ}C$ and at stress levels of 125-550 MPa, corresponding to PWHT condition. The results revealed that PWHT cracking resistance was improved by Ti addition, i.e., Ti contributed to the formation of fine and stable MX precipitates and suppression of coarse M23C6 carbides, resulting in improvement of stress rupture ductility. Meanwhile, rupture strength increased with increasing solute C content.

Extended Slip-Weakening Model and Inference of Rupture Velocity (Slip-Weakening 모델의 확장과 단층 파열속도의 추정)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.219-232
    • /
    • 2020
  • The slip-weakening model developed by Ohnaka and Yamashita is extended over the breakdown zone by equating the scaling relationships for the breakdown zone and the whole rupture area. For the extension, the study uses the relationship between rupture velocity and radiation efficiency, which was derived in the theory of linear elastic fracture mechanics, and the definition of fmax given in the specific barrier model proposed by Papageorgiou and Aki. The results clearly show that the extended scaling relationship is governed by the ratio of rupture velocity to S wave velocity, and the velocity ratio can be determined by the ratio of characteristic frequencies of a Fourier amplitude spectrum, which are corner frequency, fc, and source-controlled cut-off frequency, fmax, or vice versa. The derived relationship is tested by using the characteristic frequencies extracted from previous studies of more than 130 shallow crustal events (focal depth less than 25 km, MW 3.0~7.5) that occurred in Japan. Under the assumption of a dynamic similarity, the rupture velocity estimated from fmax/fc and the modified integral timescale give quite similar scale-dependence of the rupture area to that given by Kanamori and Anderson. Also, the results for large earthquakes show good agreement to the values from a kinematic inversion in previous studies. The test results also indicate the unavailability of the spectral self-similarity proposed by Aki because of the scale-dependent rupture velocity and the rupture velocity-dependent fmax/fc; however, the results do support the local similarity asserted by Ohnaka. It is also remarkable that the relationship between the rupture velocity and fmax/fc is quite similar to Kolmogorov's hypothesis on a similarity in the theory of isotropic turbulence.

Effect of Test Zone Selection for Evaluating Bending Strength of Lumber

  • Pang, Sung-Jun;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.392-398
    • /
    • 2013
  • This study investigated the effect of test zone selection for evaluating bending strength of visually graded lumber. This will contribute to the understanding of two different methods under different standards. In method I, the major defect was randomly placed in the test specimen. In method II, the major defect was randomly placed in the maximum moment zone (MMZ). The results showed that the method II is more accurate for reflecting the effect of defects governing the grade of lumber. Unless the maximum strength-reducing defect (MSRD) is placed in MMZ, the evaluated value would be higher than that of MSRD. For evaluating the modulus of rupture (MOR) of visually graded lumber in test set-up of Method I, the Eq. (5) needs to be considered.

Appearance of Meniscus Tear Associated with ACL Rupture - Analysis of Location and Type of Meniscus Tear - (전방 십자인대 파열과 동반된 반월상 연골 파열 양상 - 파열부위 및 형태의 분석 -)

  • Lee, Yeong-Hyun;Nam, Il-Hyun;Moon, Gi-Hyuk;Yun, Ho-Hyun;Kim, Jae-Cheol;Ahn, Gil-Yeong
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.6 no.1
    • /
    • pp.45-49
    • /
    • 2007
  • Purpose: We analyzed the location and type of meniscus tear associated with ACL rupture in order to estimate and prepare whether the meniscus tear is in a repairable location. Materials and Methods: We reviewed 78 cases who had ACL reconstructive surgery due to ACL rupture. We set the period of acute injury on the basis of under 12 months after trauma. The location and type of meniscus tear was analyzed in accordance with MRI findings and arthroscopic findings. Results: The 50 cases of meniscus tear were detected out of the 78 ACL rupture;32 cases were lateral meniscus tears, 24 were medial meniscus tears and 6 cases were both menisci tears. From a total of 56 meniscus tears, 30 cases were longitudinal tears, 22 cases were red-red zone tears and 35 cases(62%) were posterior horn tears. Conclusion: The most common type of meniscus tear associated with ACL rupture war longitudinal tear at the red-red zone or meniscosynovial junction. Majority of the tears located at that place can be healed with conservative treatment, arthroscopic meniscus suture.

  • PDF

Simulation of the fracture of heterogeneous rock masses based on the enriched numerical manifold method

  • Yuan Wang;Xinyu Liu;Lingfeng Zhou;Qi Dong
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.683-696
    • /
    • 2023
  • The destruction and fracture of rock masses are crucial components in engineering and there is an increasing demand for the study of the influence of rock mass heterogeneity on the safety of engineering projects. The numerical manifold method (NMM) has a unified solution format for continuous and discontinuous problems. In most NMM studies, material homogeneity has been assumed and despite this simplification, fracture mechanics remain complex and simulations are inefficient because of the complicated topology updating operations that are needed after crack propagation. These operations become computationally expensive especially in the cases of heterogeneous materials. In this study, a heterogeneous model algorithm based on stochastic theory was developed and introduced into the NMM. A new fracture algorithm was developed to simulate the rupture zone. The algorithm was validated for the examples of the four-point shear beam and semi-circular bend. Results show that the algorithm can efficiently simulate the rupture zone of heterogeneous rock masses. Heterogeneity has a powerful effect on the macroscopic failure characteristics and uniaxial compressive strength of rock masses. The peak strength of homogeneous material (with heterogeneity or standard deviation of 0) is 2.4 times that of heterogeneous material (with heterogeneity of 11.0). Moreover, the local distribution of parameter values can affect the configuration of rupture zones in rock masses. The local distribution also influences the peak value on the stress-strain curve and the residual strength. The post-peak stress-strain curve envelope from 60 random calculations can be used as an estimate of the strength of engineering rock masses.

A study on the KLA behaviors in HAZ and the mechanical properties of austenitic stainless steel weld (스테인레스강용접 열영향부의 KLA거동 및 기계적 특성에 관한 연구)

  • 조종춘;김영석;김학민
    • Journal of Welding and Joining
    • /
    • v.8 no.4
    • /
    • pp.27-34
    • /
    • 1990
  • Integranular corrosion behaviors of KAL (Knife Line Attack) and mechanical properties such as tensile and creep rupture were investigated for the tube material used for nearly 20 years under the condition of 463.deg. C and 28 $kg/cm^2$. Based and weld metal were austenitic stainless steel AISI 321 containing Ti, AISI 347 containing Nb, respectively. KLA is a kind of the intergranular corrosion which often occurs just near the HAZ (heat affected zone) of AISI 321 and AISI 347 stainless steel due to the grain boundary sensitization. In KLA zone, intergranular corrosion crack has propagated outwards from the inner surface and carbides of white and narrow band type assuming as (Cr, Fe) carbide were confirmed. All the delta-ferrite formed in the weld metal during weld solidification has been transformed into sigma-phase since delta-ferrte was exposed for 20 years at 463.deg. C. Elongation was very low at the range from room temperature to 600.deg. C and it was confirmed that creep-rupture properties were not consideralbly affected.

  • PDF

Relative Panel Zone Strength in Seismic Steel Moment Connections for Prevention of Panel Zone Shear Buckling (내진철골모멘트접합부 패널존의 전단좌굴 방지를 위한 패널존 상대강도)

  • Kim, So-Yeon;Lee, Cheol-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.845-850
    • /
    • 2007
  • The empirical AISC panel zone thickness provision$(t_z\geq(d_z+w_z)$/90) to prevent the cyclic shear buckling of the panel zone was proposed based on the test data of Krawinkler et al. (1971) and Bertero et al. (1973) However, no published records of the equation development or any other background information appear to be available. The calibrated finite element analysis results of this study indicated that the AISC provision was not reasonable. In this study, through including the effects of the column axial force and the aspect ratio of the panel zone, a new equation for the relative strength between the beam and the panel zone was proposed such that the proposed equation can prevent the panel zone shear buckling and reduce the potential fracture associated with the kinking of the column flanges.

  • PDF

Seismic Behavior of Steel Moment Connections with Different Structural Characteristics (철골 모멘트 연결부의 구조특성에 따른 지진 거동 연구)

  • Joh, Chang-Bin
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.76-84
    • /
    • 2002
  • The seismic behaviors of steel moment connections with different structural characteristics are investigated. The rupture index, which represents the fracture potential, is adopted to study the effect of concrete slab and the relative strength between the coin the beam, and Panel zone on the ductility of connections. The results show that the presence of slab increases the beam strength, imposes constraint near the beam top flange, and consequently, induces concentrated deformation near the beam access hall, which reduces the ductility of the connection. The total deformation capacity of the connection depends not only on the beam but also on the column and panel zone. Therefore, the detrimental slab effects and the relative strength should be considered in the seismic design of the connection.