• Title/Summary/Keyword: rupture response

Search Result 92, Processing Time 0.027 seconds

Appropriate Response Index for Predicting Rupture in WUF-W Connections using FEA (유한요소 해석을 이용한 WUF-W 접합부 최적의 파단 예측 반응지표 선정)

  • Han, Sang Whan;Kim, Young Woo;Kim, Tae O
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.205-213
    • /
    • 2017
  • The WUF-W moment connection is a pre-qualified connection that can be used for special moment frames specified in current seismic design specifications. Since the stress distribution near the connection varies according to access hole configuration, the cyclic performance of WUF-W connections is strongly affected by the access hole configurations. To evaluate the connection performance according to various access hole configurations, it is expensive to conduct experiments with many connection specimens. Instead, finite element analyses (FEA) can be performed. Throughout the FEA, stress and strain distribution in the connection can be monitored at each loading step. The purpose of this study is to construct nonlinear 3-dimensional FE models for accurately predicting the cyclic behavior of WUF-W connections. For predicting connection fracture using FEA, an appropriate response index detecting the incidence of connection rupture is proposed.

Sphericity Optimization of Calcium Alginate Gel Beads and the Effects of Processing Conditions on Their Physical Properties

  • Woo, Jin-Wook;Rob, Hye-Jin;Park, Hyun-Duck;Ji, Cheong-Il;Lee, Yang-Bong;Kim, Seon-Bong
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.715-721
    • /
    • 2007
  • In this study, the sphericity of calcium alginate gel beads was optimized using response surface methodology. The optimum conditions for bead sphericity were a concentration of 2.24% sodium alginate, a flow rate of 0.059 mL/sec for the sodium alginate solution, and a 459 rpm rotation for the calcium chloride solution. The predicted and experimental bead sphericities under the optimum conditions were 94.5 and 96.7%, respectively, showing close agreement. We also investigated the processing condition effects for the physical properties of the optimized calcium alginate gel beads. Immersion in hot water slightly decreased bead size and rupture strength. NaCl treatment increased bead size and decreased rupture strength. While the pH of the calcium chloride solution had little effect on bead sphericity, the bead sizes and gel strengths decreased with longer times in each pH solution. The beads coated with pectin and glucomannan showed no significant changes in sphericity, but their sizes decreased with time. The coated beads showed higher rupture strengths than the uncoated beads.

Influence of near-fault ground motions characteristics on elastic seismic response of asymmetric buildings

  • Tabatabaei, R.;Saffari, H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.489-500
    • /
    • 2011
  • The elastic seismic response of plan-asymmetric multi storey steel-frame buildings is investigated under earthquake loading with particular emphasis on forward-rupture directivity and fling records. Three asymmetric building systems are generated with different torsional stiffness and varying static eccentricity. The structural characteristic of these systems are designed according to UBC 97 code and their seismic responses subjected to a set of earthquake records are obtained from the response history analysis (RHA) as well as the linear static analysis (LSA). It is shown that, the elastic torsional response is influenced by the intensity of near-fault ground motions with different energy contents. In the extreme case of very strong earthquakes, the behaviour of torsionally stiff buildings and torsionally flexible buildings may differ substantially due to the fact that the displacement envelope of the deck depends on ground motion characteristics.

Dynamic Response of Pneumatic Transmission Lines (공압 전달관의 동적 응답)

  • 박현우;박종호;신필권;심우건
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.285-294
    • /
    • 1999
  • Transient analysis for compressible fluid flow has been performed experimentally and analytically to study the dynamic characteristics of the end volume transmission lines following a sudden pressure change a its entrance. The numerical method was developed based on the method of characteristics. The sudden pressure at its entrance was generated by rupture of diaphragm in a shock tube. The sudden pressure was used to obtain the response, as input signal for the numerical analysis. The response to the sudden pressure at the end volume was measured using a pressure transducer. The experimental result shows good agreements with the numerical result. The effects of tube length, its diameter and end volume magnitude are evaluated on the responses of the pressure and on the damping factor. It is found that the viscous damping effects on the response through the transmission pipeline becomes larger with increasing pi;eline length and decreasing diameter of the pipe and the fluid-elastic stiffness decreases with increasing the terminal volume. The numerical approach presented in this paper can be very useful in designing the instrument and control system.

  • PDF

Successful Surgical Treatments of Scleral Rupture with Hyphema in a Young Cat (어린 고양이에서 발생한 안구내출혈을 동반한 공막 파열의 수술적 치료)

  • Park, Youngwoo;Jung, Yechan;Lim, Jae Hyun
    • Journal of Veterinary Clinics
    • /
    • v.32 no.1
    • /
    • pp.127-129
    • /
    • 2015
  • A 3-month-old, female Persian cat was presented with sclera mass. The mass was detected after cat's squeals during the playing with a dog before 2 days. On ophthalmic examination, a $2{\times}5mm$ dark purple colored raised mass was observed 1 mm behind the limbus in the right eye. Anterior chamber was filled with blood and epithelial defect was detected at 2 o'clock in the right central cornea. After general anesthesia, resection of the protruded iris was performed with iris scissors and bipolar cautery. Ruptured sclera and conjunctiva were closed with simple interrupted and simple continuous suture, respectively. Also, irrigation and aspiration (I/A) of the anterior chamber was performed to remove blood clot with bimanual I/A handpiece in the right eye. Four months after the surgery, the right eye was recovered completely and menace response was positive in spite of the retinal lesions.

Management of Persistent Pulmonary Hypertension in Preterm Infants

  • Lee, Byong Sop
    • Neonatal Medicine
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Persistent pulmonary hypertension of the newborn (PPHN) is a consequence of the failure of a decrease in the elevated pulmonary vascular resistance after birth. Pulmonary vasodilators, including inhaled nitric oxide (iNO), have been the mainstream of targeted therapy for PPHN, but no drugs have been proven to be effective in preterm infants with PPHN. The fetus remains hemodynamically stable despite lower arterial oxygen tension and pulmonary blood flow as compared to full-term newborns. This adaptation is due to the lower oxygen requirement and high oxygen-carrying capacity of fetal circulation. The immature lungs of preterm infants are more vulnerable to reactive oxygen species, and the response of pulmonary vascular dilatation to blood oxygen tension is blunted in preterm infants. Recently, iNO has been reported to be effective in a selected group of preterm infants, such as those with prolonged preterm rupture of membrane-oligohydramnios-pulmonary hypoplasia sequence. PPHN in preterm infants, along with maximum supportive treatment based on fetal physiology and meticulous assessment of cardiovascular function, is in dire need of new treatment guidelines, including optimal dosing strategies for pulmonary vasodilators.

Conversion of Recorded Ground Motion to Virtual Ground Motion Compatible to Design Response Spectra (계측 기록의 설계스펙트럼 부합 가상 지진 변환 방법)

  • Ji, Hae Yeon;Choi, Da Seul;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.33-42
    • /
    • 2021
  • The design response spectrum presented in the seismic design standard reflects the characteristics of the tectonic environment at a site. However, since the design response spectrum does not represent the ground motion with a specific earthquake magnitude or distance, input ground motions for response history analysis need to be selected reasonably. It is appropriate to use observed ground motions recorded in Korea for the seismic design. However, recently recorded ground motions in the Gyeongju (2016) or Pohang (2017) earthquakes are not compatible with the design response spectrum. Therefore, it is necessary to convert the recorded ground motion in Korea to a model similar to the design response spectrum. In this study, several approaches to adjust the spectral acceleration level at each period range were tested. These are the intrinsic and scattering attenuation considering the earthquake environment, magnitude, distance change by the green function method, and a rupture propagation direction's directivity effect. Using these variables, the amplification ratio for the representative natural period was regressed. Finally, the optimum condition compatible with the design response spectrum was suggested, and the validation was performed by converting the recorded ground motion.

Implementation of a macro model to predict seismic response of RC structural walls

  • Fischinger, Matej;Isakovic, Tatjana;Kante, Peter
    • Computers and Concrete
    • /
    • v.1 no.2
    • /
    • pp.211-226
    • /
    • 2004
  • A relatively simple multiple-vertical-line-element macro model has been incorporated into a standard computer code DRAIN-2D. It was used in blind predictions of seismic response of cantilever RC walls subjected to a series of consequent earthquakes on a shaking table. The model was able to predict predominantly flexural response with relative success. It was able to predict the stiffness and the strength of the pre-cracked specimen and time-history response of the highly nonlinear wall as well as to simulate the shift of the neutral axis and corresponding varying axial force in the cantilever wall. However, failing to identify the rupture of some brittle reinforcement in the third test, the model was not able to predict post-critical, near collapse behaviour during the subsequent response to two stronger earthquakes. The analysed macro model seems to be appropriate for global analyses of complex building structures with RC structural walls subjected to moderate/strong earthquakes. However, it cannot, by definition, be used in refined research analyses monitoring local behaviour in the post critical region.

Analysis of RC Beams Strengthened with Fiber Sheets (섬유시트로 보강된 RC 보의 해석기법 연구)

  • Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.154-163
    • /
    • 2006
  • This paper presents a nonlinear analysis method for the reinforced concrete beams strengthened by the external bonding of high strength, lightweight fiber sheets on the tension face of the beams. The method is based on the results of experimental studies. The experimental study involved tensile tests of 120 specimens to evaluate the tensile properties of fiber sheets(carbon, glass, and aramid fiber) and bending tests of 75 beams strengthened with various types of fiber sheets to evaluate the flexural capacities. Based on these experimental results, reasonable rupture strains of the fiber sheets were estimated. The nonlinear flexural analysis considered nonlinear flexural stresses as compressive and tensile stresses of concrete, load-deflection curves, and rupture strains of fiber sheets. The nonlinear flexural analysis accurately predicts the load-deflection response and the flexural behavior of the retrofitted beams.

Collision Strength Analysis of Double Hull Tanker (이중선체(二重船體) 유조선(油槽船)의 충돌강도해석(衝突强度解析))

  • J.K. Paik;P.T. Pedersen
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.103-117
    • /
    • 1995
  • A design-oriented method for analysis of the structural damage due to ship collisions is developed by using the idealized structural unit method(ISUM). The method takes into account yielding, crushing, rupture, the coupling effects between local and global failure of the structure, the influence of strain-rate sensitivity and the gap/contact conditions. The method is verified by a comparison of experimetal and numerical results obtained from test models of double-skin plated structures in collision/grounding situations with the present solutions. As an illustrative example, the method has been used for analyses of a side collision of a double-hull tanker. Several factors affecting ship collision response. namely the collision speed and the scantlings/arrangements of strength members, are discussed.

  • PDF