• Title/Summary/Keyword: runoff volume

Search Result 320, Processing Time 0.026 seconds

The Applicability of KIMSTORM2 for Flood Simulation Using Conditional Merging Method and GPM Satellite Rainfall Data (조건부 합성기법과 GPM 위성강우자료를 이용한 분포형 강우유출모형 KIMSTORM2의 홍수모의 적용성 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Jang, Won Jin;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.111-111
    • /
    • 2018
  • 본 연구의 목적은 조건부 합성 기법(Conditional Merging, CM) 기법을 활용하여 GPM(Global Precipitation Measurement) 위성 자료를 보정하고, 이를 격자기반 분포형 강우-유출 모형(KIneMatic wave STOrm Runoff Model2, KIMSTORM2)에 적용하여 보정된 자료의 효율성을 검토하는데 있다. 모형의 유출 해석은 남강댐 유역($2,293km^2$)을 대상으로 하였으며, 2016년 10월에 발생한 태풍 차바에 대하여 GPM 자료와 CM 기법을 적용한 GPM 자료를 각각 활용하여 결과를 비교하였다. 이 때, 강우자료의 보정은 유역 내 위치한 21개 지점의 지상강우자료를 활용하였으며, 각각의 위성강우자료에 유출 검보정은 남강댐 유역 내 3개의 수위관측 지점(산청, 창촌, 남강댐)을 대상으로 실시하였다. 유출 결과는 결정계수(Coefficient of determination, $R^2$), 모형 효율성 계수(Nash-Sutcliffe efficiency, NSE) 및 유출용적지수(Volume conservation index, VCI)를 이용하여 산정하였다. 지상강우자료와 CM 기법을 통해 보정한 강우자료는 대기의 많은 영향을 받는 위성자료의 특성을 보정하여 공간유출 및 첨두유출을 합리적으로 재현할 수 있을 것으로 예상된다.

  • PDF

A Study on First Flush Storage Tank Design for Combined Sewer Overflows (CSOs) Control (합류식하수도 월류수 관리를 위한 초기우수 저류조 설계방안 연구)

  • Son, Bongho;Oa, Seongwook
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.654-660
    • /
    • 2011
  • One of the best way to control Combined Sewer Overflow (CSO) is proposed to construct first flush storage tank. But there is little known parameters for optimum design of these facilities. This study was conducted to get optimum design parameters for a first flush storage tank construction. The optimization of the tank is generally based upon some measure of SS(Suspended Solid) mass holding efficiency. Water quality deterioration of receiving water body happened right after first time occurring rainfall in dry weather seasons. So, design rainfall intensity is used at 2 mm/hr for peak of monthly average intensities of dry seasons. The capacities for each evaluated catchment are designed from 14.4 min to 16.1 min HRT of CSOs flow at design rainfall intensity. Owing to all storage tanks are connected to interception sewer having a redundancy, the suggested volume could be cut down.

Prediction of total sediment load: A case study of Wadi Arbaat in eastern Sudan

  • Aldrees, Ali;Bakheit, Abubakr Taha;Assilzadeh, Hamid
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.781-796
    • /
    • 2020
  • Prediction of total sediment load is essential in an extensive range of problems such as the design of the dead volume of dams, design of stable channels, sediment transport in the rivers, calculation of bridge piers degradation, prediction of sand and gravel mining effects on river-bed equilibrium, determination of the environmental impacts and dredging necessities. This paper is aimed to investigate and predict the total sediment load of the Wadi Arbaat in Eastern Sudan. The study was estimated the sediment load by separate total sediment load into bedload and Suspended Load (SL), independently. Although the sediment records are not sufficient to construct the discharge-sediment yield relationship and Sediment Rating Curve (SRC), the total sediment loads were predicted based on the discharge and Suspended Sediment Concentration (SSC). The turbidity data NTU in water quality has been used for prediction of the SSC in the estimation of suspended Sediment Yield (SY) transport of Wadi Arbaat. The sediment curves can be used for the estimation of the suspended SYs from the watershed area. The amount of information available for Khor Arbaat case study on sediment is poor data. However, the total sediment load is essential for the optimal control of the sediment transport on Khor Arbaat sediment and the protection of the dams on the upper gate area. The results show that the proposed model is found to be considered adequate to predict the total sediment load.

A study of predicting runoff volume applying a two-parameter analytical probabilistic model for South Korea (이변수 해석적 확률모형을 적용한 우리나라 유출량 예측 연구)

  • Lee, Moonyoung;An, Heejin;Jeon, Seol;Kim, Si Yeon;Min, inkyung;Park, Daeryong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.201-201
    • /
    • 2022
  • 본 연구에서는 강우량이 여름에 집중되어있는 우리나라의 강우 특성을 잘 나타낼 수 있는 최적의 확률분포형을 선정하고 해석적 확률모델 (Analytical Probabilistic Model, APM)을 개발하여 유출량을 예측하고자 하였다. 국내 10개 지역인 부산, 춘천, 대구, 대전, 전주, 진주, 서울, 속초, 태백, 원주를 연구 지역으로 설정하였고, 30년 시 단위 강우자료를 지역별 interevent time definition(IETD)을 적용하여 강우 사상으로 그룹화하였다. APM 연구에 일반적으로 사용되는 일변수 지수 분포 이외의 이변수 지수, 감마, 이변수 로그정규 확률밀도함수 (Probability Density Function, PDF)를 강우사상의 특성인 강우량, 강우 지속시간, 무강우 시간의 히스토그램에 적용한 결과, 이 변수 로그정규분포가 우리나라의 강우 특성을 가장 잘 대표하였다. 로그정규분포를 이용하여 APM을 유도하고 유출량을 예측하였다. 예측한 유출량에 대한 빈도분석을 수행하여 Storm Water Management Model (SWMM)의 결과와 비교함으로써 유도한 APM의 적합성을 확인하였다. SWMM의 입력 매개변수 보정을 위해서는 서울 군자 지역에서 관측한 실제 강우량 및 유출량 자료를 사용하였다. 로그정규분포로 유도한 APM과 SWMM의 빈도분석 결과를 비교하였을 때 초과 확률과 재현주기 모두 매우 유사한 결과를 나타내었음을 확인하였다.

  • PDF

Performance assessment of an urban stormwater infiltration trench considering facility maintenance (침투도랑 유지관리를 통한 도시 강우유출수 처리 성능 평가)

  • Reyes, N.J. D.G.;Geronimo, F.K.F.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.424-431
    • /
    • 2018
  • Stormwater runoff containing considerable amounts of pollutants such as particulates, organics, nutrients, and heavy metals contaminate natural bodies of water. At present, best management practices (BMP) intended to reduce the volume and treat pollutants from stormwater runoff were devised to serve as cost-effective measures of stormwater management. However, improper design and lack of proper maintenance can lead to degradation of the facility, making it unable to perform its intended function. This study evaluated an infiltration trench (IT) that went through a series of maintenance operations. 41 monitored rainfall events from 2009 to 2016 were used to evaluate the pollutant removal capabilities of the IT. Assessment of the water quality and hydrological data revealed that the inflow volume was the most relative factor affecting the unit pollutant loads (UPL) entering the facility. Seasonal variations also affected the pollutant removal capabilities of the IT. During the summer season, the increased rainfall depths and runoff volumes diminished the pollutant removal efficiency (RE) of the facility due to increased volumes that washed off larger pollutant loads and caused the IT to overflow. Moreover, the system also exhibited reduced pollutant RE for the winter season due to frozen media layers and chemical-related mechanisms impacted by the low winter temperature. Maintenance operations also posed considerable effects of the performance of the IT. During the first two years of operation, the IT exhibited a decrease in pollutant RE due to aging and lack of proper maintenance. However, some events also showed reduced pollutant RE succeeding the maintenance as a result of disturbed sediments that were not removed from the geotextile. Ultimately, the presented effects of maintenance operations in relation to the pollutant RE of the system may lead to the optimization of maintenance schedules and procedures for BMP of same structure.

A Study on the Use of GIS-based Time Series Spatial Data for Streamflow Depletion Assessment (하천 건천화 평가를 위한 GIS 기반의 시계열 공간자료 활용에 관한 연구)

  • YOO, Jae-Hyun;KIM, Kye-Hyun;PARK, Yong-Gil;LEE, Gi-Hun;KIM, Seong-Joon;JUNG, Chung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.50-63
    • /
    • 2018
  • The rapid urbanization had led to a distortion of natural hydrological cycle system. The change in hydrological cycle structure is causing streamflow depletion, changing the existing use tendency of water resources. To manage such phenomena, a streamflow depletion impact assessment technology to forecast depletion is required. For performing such technology, it is indispensable to build GIS-based spatial data as fundamental data, but there is a shortage of related research. Therefore, this study was conducted to use the use of GIS-based time series spatial data for streamflow depletion assessment. For this study, GIS data over decades of changes on a national scale were constructed, targeting 6 streamflow depletion impact factors (weather, soil depth, forest density, road network, groundwater usage and landuse) and the data were used as the basic data for the operation of continuous hydrologic model. Focusing on these impact factors, the causes for streamflow depletion were analyzed depending on time series. Then, using distributed continuous hydrologic model based DrySAT, annual runoff of each streamflow depletion impact factor was measured and depletion assessment was conducted. As a result, the default value of annual runoff was measured at 977.9mm under the given weather condition without considering other factors. When considering the decrease in soil depth, the increase in forest density, road development, and groundwater usage, along with the change in land use and development, and annual runoff were measured at 1,003.5mm, 942.1mm, 961.9mm, 915.5mm, and 1003.7mm, respectively. The results showed that the major causes of the streaflow depletion were lowered soil depth to decrease the infiltration volume and surface runoff thereby decreasing streamflow; the increased forest density to decrease surface runoff; the increased road network to decrease the sub-surface flow; the increased groundwater use from undiscriminated development to decrease the baseflow; increased impervious areas to increase surface runoff. Also, each standard watershed depending on the grade of depletion was indicated, based on the definition of streamflow depletion and the range of grade. Considering the weather, the decrease in soil depth, the increase in forest density, road development, and groundwater usage, and the change in land use and development, the grade of depletion were 2.1, 2.2, 2.5, 2.3, 2.8, 2.2, respectively. Among the five streamflow depletion impact factors except rainfall condition, the change in groundwater usage showed the biggest influence on depletion, followed by the change in forest density, road construction, land use, and soil depth. In conclusion, it is anticipated that a national streamflow depletion assessment system to be develop in the future would provide customized depletion management and prevention plans based on the system assessment results regarding future data changes of the six streamflow depletion impact factors and the prospect of depletion progress.

Numerical Modeling of Circulation Characteristics in the Kwangyang Estuarine System (광양만 권역의 해수순환 수치모델 실험)

  • Kim, Baek Jin;Ro, Young Jae;Jung, Kwang Young;Park, Kwang Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.253-266
    • /
    • 2014
  • The ECOM3D is used to study the circulation characteristics and density current from the Sumjin River runoff in the Kwangyang Estuarine System, South Sea, Korea. Annual mean value of $120m^3/s$ was imposed from the Sumjin River. The numerical model results in terms of tidal height, current and salinity field show satisfactory with skill scores over 90%. The current velocity showed the range of 1~2.5 m/s during flood and ebb phases. In particular, very strong flow occur in the narrow Channels of Noryang, Daebang and Changson exceeding over 2.0 m/s. The tidal residual currents in the various locations in the Kwangyang Estuary showed the range of 1~21 cm/s, The density-driven current through the Yeosu and Noryang Channels are about 12 cm/s and 4 cm/s, respectively. The current path through the Yeosu Channel is deflected toward west Bank. Based on budget analysis of the volume flux, the volume flux through the Yeosu Channel and the Noryang Channel were estimated to be 97.4 and $22.1m^3/s$ accounting for the 81.5% and 18.5% of total flux, respectively.

Micromorphological Changes of Rill Development under Simulated Rainfall and Inflow on Steep Slopes (모의 강우와 유입수에 의해 급경사면에서 발달한 세류의 미세지형 변화)

  • Shin, Seung Sook;Sim, Young Ju;Son, Sang Jin;Park, Sang Deog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Interrill erosion dominates in forest areas, and the erosion rate in surface-disturbed areas is significantly increased by the development and expansion of rill. In this study, soil erosion experiments using simulated rainfall and inflow were performed to understand the development and the micromorphological changes of rill on steep slopes. The characteristic factors of the micromorphology, such as the rill cross section, rill volume, rill density, rill order, and rill sharpness, were analyzed according to steepness and location (upper or lower) of slope. The head-cut of the simultaneous incised rills by rainfall simulation moved rapidly upslope, and the randomly developed rills expanded deeply and widely with their connection. The rill cross section evolved to downslope gradually increased. The rill volume occupied about 78 % of the sediment volume, confirming that the contribution of the sediment from the rill erosion is greater than that of the interrill erosion. Although the rate of increase in rill order slowed as the slope increased, the total length and density of the rill generally increased. As the slope increased from 15° to 20°, the bed incision of rills became larger than the sidewall expansion, and the rill sharpness increased by 1.6 times. The runoff coefficient on the lower slope decreased by 12.3 % than that on the upper slope. It was evaluated that the subsoil exposures and formation changes by the rill expansion increased the infiltration rate. Although the sediment accompanying the rills generally increased with slope increase, it was directly influenced by the hydraulic velocity of enhanced rill with the local convergence and expansion in the process of the rill evolution.

Analysis on the Effects of Flood Damage Mitigation according to Installation of Underground Storage Facility (지하저류조 설치에 따른 침수피해 저감효과 분석)

  • Kim, Young Joo;Han, Kun Yeun;Cho, Wan Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.41-51
    • /
    • 2010
  • In this study, runoff simulation was carried out in the area of Bisan 7-dong, Seo-gu, Daegu as drainage basin and the effects of the installation of underground storage facilities were analyzed during heavy rainfall. SWMM model was used for the runoff and pipe network analysis on Typhoon Maemi, 2003. 2-D inundation analysis model based on diffusion wave was employed for inundation analysis and to verify computed inundation areas with observed inundation trace map. The simulation results agree with observed in terms of inundation area and depth. Also, the effects of flood damage mitigation were analyzed through the overflow discharge and 2-D inundation analysis, depending upon whether the underground storage facility is installed or not. When the underground storage facility ($W:120m{\times}L:180m{\times}H:1.7m$) is installed, volume of overflow could be reduced by 72% and flooding area could be reduced by 40.1%. When the underground storage facility ($W:120m{\times}L:180 m{\times}H:2.0m$) is installed, volume of overflow could be reduced by 84.8% and flooding area could be reduced by 50.6%. When the underground storage facility ($W:120m{\times}L:180m{\times}H:2.2m$) is installed, volume of overflow could be reduced by 94% and flooding area could be reduced by 91.2%. There is no overflow of manhole, when the height of storage facility is 2.5 m. It is expected that the study results presented through quantitative analysis on the effects of underground facilities can be used as base data for socially and economically effective installation of underground facilities to prevent flood damage.

The Characteristics of Runoff for Hwacheon dam watershed (화천댐 상류유역의 유출거동 특성)

  • Kim, Nam-Won;Lee, Jeong-Eun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1069-1077
    • /
    • 2009
  • Lately, it is an important concern in water resources research to maintain a stable water supply according to a future climate change and an increase in water use. In Han-River basin, approximately 10 % of water resources that is provided the capital region (Gyeonggi, Seoul etc.) has been reduced as a consequence of the construction of Imnam Dam (storage volume: 27 billion $m^3$) located in the upper Hwacheon Dam upstream area. Therefore, streamflows have decreased in Bukhangang basin, but it could not be evaluated quantitatively. In this study, SWAT-K which is the physically based long-term runoff simulation model, was used in order to evaluate the effect of Imnam Dam on the reduced inflow to Hwacheon Dam according to the change of hydrological condition in the upstream area of Hwacheon Dam. For the model input data of North Korea area, meteorological data of GTS (Global Telecommunication System) were used, and soil maps by FAO/UNESCO (2003) were applied. Temporal variations of water resources is investigated with comparison of observed and simulated inflows at Hawcheon Dam site. Also, annual, monthly, seasonal decreases in water resources were evaluated using the flow duration analysis of simulated streamflows with or without Imnam dam.