• Title/Summary/Keyword: runoff volume

Search Result 320, Processing Time 0.028 seconds

Analysis of First Flushing Effects for the Vineyard Storm Runoff (강우시 포도밭에 대한 초기세척효과 분석)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Lee, Jae-Woon;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.977-986
    • /
    • 2011
  • This study analyzed the characteristics of stormwater runoff in the orchard areas and quantitatively estimated effluence of nonpoint source pollutants for the volume of runoff. Two target areas under vine cultivation were each $2,000m^2$ and $1,800m^2$, located in Gyeongju City. Since grape was the only crop on the target area, the characteristics of stormwater runoff at vineyard could be evaluated independently. A total of 51 rainfall events in the vineyard area during two years(2008-2009) was surveyed, and 19 of them became stormwater runoff, with rainfall ranging 16.5 - 79.7 mm and antecedent dry period of 1-13 days. The pollutant runoff loads by volume of stormwater runoff showed BOD ranging 19.5 - 45.3% in 30% of runoff volume. The average pollution discharge rate was 32.4%, indicating small first flush effect of BOD. The range of SS concentrations was 5 - 52.0% in 10% of runoff volume, showing the average 28.7% of discharge rate, about 3 times more than rainfall effluent. TOC and TN appeared to be similar to the results of BOD, the average discharge rate of 30.9% and 30.6% for TOC and TN, respectively, for 30% of stormwater runoff volume. Average discharge rate of COD and TP in the same runoff volume was 35.1% and 36%, respectively, showing comparatively high discharge ratio. As the targeted vineyard area was permeable land, the pollution load ratio against rainfall-runoff volume appeared to be 1:1, implying no strong first flush effect for all the survey items.

The Effect of Connected Bioretention on Reduction of Surface Runoff in LID Design (LID 설계시 식생체류지간 연결에 의한 강우유출수 저감 효과분석)

  • Jeon, Ji-Hong;Seo, Seong-Cheol;Park, Chan-Gi
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.562-569
    • /
    • 2016
  • Recently, Low Impact Development (LID) is being used in Korea to control urban runoff and nonpoint source pollution. In this study, we evaluated the reduction of surface runoff from a study area, as the effect of connecting three bioretention as LID-BMP. Surface runoff and storage volume of bioretention is estimated by the Curve Number (CN) method. In this study, the storage volume of bioretention is divided by the volume of surface runoff and precipitation which directly enters the bioretention. The ratio of captured surface runoff volume to storage volume is highly influenced by the ratio of drainage area to surface area of bioretention. The high bioretention surface area-to-drainage area ratio captures more surface runoff. The ratio of 1.2 captures 51~54% of the total surface runoff, ranging from 5-30cm of bioretention depth; a ratio of 6.2 captures 81~85%. Three connected bioretentions could therefore captures much more runoff volume, ranging from $35.8{\sim}167.3m^3$, as compared to three disconnected bioretentions at their maximum amount of precipitation with non-effluent from the connecting three bioretentions. Hence, connecting LID-BMPs could improve the removal efficiencies of surface runoff volume and nonpoint source pollution.

Areal Distribution of Runoff Volume by Seasonal Watershed Model (계절유역 모형을 사용한 유량의 공간적분포 결정)

  • 선우중
    • Water for future
    • /
    • v.17 no.2
    • /
    • pp.125-131
    • /
    • 1984
  • watershed Model by mathematical formulation is one of the powerful tool to analyze the hydrologic process in a watershed. The seasonal watershed model is one of the mathematial model from which the monthly streamflow can be simulated and forcasted for given precipitaion data. This model also enables us to compute the monthly runoff at each subbgasin when the basin is subdivided into several small subbasins. The computation of runoff volume makes a Prediction of the areal distirbution of runoff volume for a given precipitation data. Several basins in Han River basin were chosen to simulate the monthly runoff and compute the runoff at each subbasin. A simple logarithmic regression were conducted between runoff ratio and area ratio. The correlation was very high and the equation can be used for prediciting flood volume when flood at downstream gaging station is know.

  • PDF

A Study on the Peak Discharge and Soil Loss Variation due to the New Town Development - In the Case of Namak New Town Development Area - (신도시 개발에 따른 첨두유출량과 토양유실량 변화에 관한 연구 -목포시 남악 신도시 개발지를 대상으로-)

  • Woo, Chang-Ho;Cho, Nam-Yul
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.4
    • /
    • pp.271-280
    • /
    • 2002
  • The purpose of this study is to explore the hydrological impacts and soil loss variation due to the land use change of Namak New Town development area. The analysis of hydrological effects and soil loss variation has been carried out using GIS in this study. In order to estimate the peak runoff volume, the Rational Method which is the most popular technique to predict runoff amounts is used. To estimate the soil loss in the study area, Universal Soil Loss Equation(USLE), which is one of the most comprehensive and useful technique to predict soil erosion is adopted. The result of this study has shown that the peak runoff volume and the total soil loss increase according to the land use change. The peak runoff volume and the total soil loss have been increased about 2 times and about 48 times more than that of pre development. The increasing of the peak runoff volume can be effective erosion, flooding and so on. A careful city planning is the first essential step to minimize the environmental impacts and to construct the ecological city.

Predictive Relationships of the Nonpoint Source Pollutant Loads with Stormwater Runoff Volumes based on the Various Regression Analyses (다양한 회귀분석을 통한 강우유출용적에 따른 비점오염부하량 예측방안)

  • Shin, Jiwoong;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.257-263
    • /
    • 2011
  • This study analyzes the correlations between non-point sources and runoff to estimate non-point sources for effective management. From the monitoring results, the correlation factors among pollutant mass loading, EMC, total runoff volume and average flow are calculated. And using correlation factors, the most related two constituents are determined. Also the most appropriate regression between two constituents are determined. Pollutant mass loading and total runoff volume has the highest correlation. Also, compound regression is found to be the most appropriate regression. This shows that pollutant mass loading increases as total runoff volume increases. It is not continuous increase but has some pattern.

Analyzing the Reduction of Runoff and Flood by Arrangements of Stormwater Storage Facilities (우수저류시설의 배치방법에 따른 유출 및 침수피해 저감효과 분석)

  • Park, Changyeol;Shin, Sang Young;Son, Eun Jung
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.45-54
    • /
    • 2013
  • This study analyzes the reduction effects of runoff and flood damage through different arrangements of stormwater storage facilities. Three scenarios based on the spatial allocation of storage capacity are used: concentrated, decentralized and combinative. The characteristics of runoff and flood damage by scenario are compared. The XP-SWMM model is used for runoff simulation by the probable rainfall of return period. The result shows that the concentrated arrangement of storage facilities is most effective to reduce the amount of peak flow and to delay the time of peak flow. Yet, while the concentrated arrangement is most effective to reduce the inundation damage, it is not effective to reduce runoff volume. The decentralized arrangement is most effective to reduce runoff volume. The combinative arrangement is effective not only the runoff reduction but also the reduction of flood damage. The result indicates that the flood mitigation strategies against heavy rainfall need to consider decentralized on-site arrangement for the reduction of runoff volume along with concentrated off-site arrangement of storage facilities.

The Characteristics and Experimental Application of AGNPS Model for Pollution Predicting in Small Watershed (소유역 오염예측모형 AGNPS 의 특성과 실험적 적용)

  • Choi, Jin-Kyu;Lee, Myung-Woo;Son, Jae-Gwon
    • Journal of Environmental Impact Assessment
    • /
    • v.3 no.2
    • /
    • pp.47-56
    • /
    • 1994
  • AGNPS model is an event-based model to analyze nonpoint-source and to examine potential water quality problems from agricultural watershed. This model uses a square grid-cell system to represent the spatial variability of watershed conditions, and simulates runoff, sediment, and nutrient transport for each cell. AGNPS model was applied on Yeonwha watershed, and the test results were compared with the measured data for runoff volume, peak runoff rate, suspended solids, and phosphorus concentration. The watershed of 278.8 ha was divided into 278 cells, each of which was 1 ha in size. The coefficients of determination for runoff volume and peak flow were (0.893 and 0.801 respectively from regression of the estimated values on the measured values. The concentration of suspendid solid was increased but decreased that of phosphate with runoff volume.

  • PDF

The Case Study of Economic Value Assessment of Spring Rainfall in the Aspect of Water Resources (수자원 측면에서의 봄비의 경제적 가치평가 사례 연구)

  • Park, So-Yeon;Ryoo, Kyong-Sik;Kim, Jung-Yun;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.193-205
    • /
    • 2014
  • The direct-runoff of South Korea's representative dams (Soyanggang, Chungju, Andong, Daecheong, and Seomjingang) and precipitation were analyzed mainly with the evenly distributed spring rainfall events across the country for the last five years. For precipitation, an increasing was presented during the period 2008-2011, but did not continue to increasing 2012. The average precipitation of the five dams displayed a similar trend. Except for Chungju and Andong Dams, the trend of runoff was similar to the one shown in the precipitation. Despite the precipitation of 2009 increased, the runoff volume decreased for Andong and Chungju Dams. In addition, Chungju Dam remarkably showed a bigger runoff volume compared to other dams. As for the Sumjingang Dam, the runoff volume was the smallest, and the difference is as great as over 15-fold when compared to other runoff values. After the result of analyzing the relation between a single runoff event and synoptic weather patterns, pattern 4 contributed to the greatest impact on this event and weather patterns. The total runoff volume of the five dams for spring rain event for the last five years that exhibited this characteristic was estimated at 5.68 billion tons($10^6m^3$). Lastly, the value of this estimation was assessed as approximately 273.1 billion KRW.

Analysis of Runoff Reduction Characteristics with LID Adaptation and LID Applicability at Bimodal Tram Route (LID 개념 적용으로 인한 유출 감소 특성 가능성 분석 및 바이모달 트램 전용노선에서의 적용성 검토)

  • Park, Jun-Ho;Park, Young-Kon;Yoon, Hee-Taek;Yoo, Yong-Gu;Kim, Jong-Gun;Park, Youn-Shik;Lim, Kyoung-Jae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.147-150
    • /
    • 2008
  • Changes in land uses at urbanizing areas are causing flooding, increase in NPS pollutants. Thus, Low Impact Development (LID) concept is now being employed in urban planning for sustainable development. Compared with the conventional BMPs, the LID is a new concept in urban planning to minimize the impacts of urbanization for site-specific LID IMPs. The objective of this study is to analyze the efficiency of LID adoption in study watershed in peak rate runoff and runoff volume reduction perspectives. The analysis revealed that the peak rate runoff and runoff volume decreased significantly with the LID adoption. This indicates that the Bimodal tram route with grass installed at the center of the road will contribute reduction in surface runoff and peak rate runoff, and also in NPS pollutant generation from the Bimodal tram route.

  • PDF

Experimental Study of Runoff Induced by Infiltration Trench (침투 트렌치로 인한 유출 양상의 실험 연구)

  • Lee, Sangho;Cho, Heeho;Lee, Jungmin;Park, Jaehyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.107-117
    • /
    • 2008
  • Infiltration facilities are effective instruments to mitigate flood and can increase base runoff in urban watersheds. In order to analyze effects of infiltration trenches physical model experiments were conducted. The physical model facility consists of two soil tanks, artificial rainfall generators, tensiometers, and piezometers. The experiment was conducted by nine times and each case differed in rainfall intensity, rainfall duration and the type of ground surface. Measured quantities in the experiments are as follows: surface runoff, subsurface runoff, trench pipe runoff, groundwater level, water content, etc. The following resulted from the model experiment: The volume of subsurface runoff at trench watershed was maximum 78.3% compared with rainfall. This value is bigger than that of ordinary rate of subsurface runoff, and shows a groundwater recharge effect of trench. The time of runoff passing through the trench became earlier and the volume of runoff became larger with the increase of inflow into the trench, while trench exfiltration into ground became relatively smaller. The results of this study presented above show that infiltration trenches are effective instruments to increase base runoff during dry periods.