• Title/Summary/Keyword: runoff reduction facilities

Search Result 72, Processing Time 0.04 seconds

Storm-Water CSOs for Reservoir System Designs in Urban Area (도시유역 저류형 시스템 설계를 위한 CSOs 산정)

  • Jo, Deok-Jun;Kim, Myoung-Su;Lee, Jung-Ho;Park, Moo-Jong;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1199-1203
    • /
    • 2005
  • Combined sewer overflows(CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available(which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a contiunous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban dranage system used analytical Probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics or the subject area using analytical Probabilistic model. Runoff characteristics manifasted the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range 3xDWF(dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a dicision of storage volume for CSOs reduction and water quality protection.

  • PDF

Optimal Location of Best Management Practices for Storm Water Runoff Reduction (우수유출저감 시설의 최적위치 결정)

  • Jang, Su Hyung;Lee, Jiho;Yoo, Chulsang;Han, Suhee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.180-184
    • /
    • 2008
  • A distributed hydrologic model of an urban drainage area on Bugok drainage area in Oncheon stream was developed and combined with a optimization method to determine the optimal location and number of best management practices (BMPs) for storm water runoff reduction. This model is based on the SCS-CN method and integrated with a distributed hydrologic network model of the drainage area using system of 4,211 hydrologic response units (HRUs). Optimal location is found by locating HRU combination that leads to a maximum reduction in peak flow at the drainage outlet in this model. The results of this study indicate the optimal locations and numbers of BMPs, however, for more exact application of this model, project cost and SCS-CN reduction rate of structural facilities such infiltration trench and pervious pavement will have to be considered.

Development of infiltration facility by utilizing tree box for urban storm water runoff reduction (도시지역 우수유출 저감을 위한 식재박스형 침투시설의 개발)

  • Joo, Jin-Gul;Cho, Hye-Jin;Lee, Yu-Hwa;Kim, Lee-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5330-5336
    • /
    • 2011
  • It becomes more and more important to develop various infiltration facilities for healthy water cycle and reduction of urban storm water runoff. In this study, a infiltration facility by utilizing tree box was developed. The developed facility is capable of reducing storm water road runoff, improving urban water cycle, and performing other sustainable and environmental functions. Because the facility can be manufactured to a smaller size than an existing runoff reduction facility, it can be installed at various road types of not only existing urban areas, but new developed areas. If the facility is applied to four-lane roadways, it is expected to reduce 65% of rainfall runoff discharge. Urban flood control improvement can be accomplished by a wide application of the developed technique.

Application of Stormwater Detention Facilities for Lacking Capacity of Sewers (강우시 도시 하수관거통수능부족 해소를 위한 우수저류시설의 적용)

  • Kim, Young-Ran;Kim, Jin-Young;Hwang, Sung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.343-350
    • /
    • 2004
  • For the last two decades, Seoul has always been affected by large floods. As climate change causes more frequent localized heavy rains exceeding the capacity of sewer or river to discharge water, flood damage is expected to increase. Under the situation, detention facilities for lacking capacity of sewers can control stormwater runoff to reduce flood damage in urbanized areas. In this study, in order to reduce flood damage in Cheonggyecheon areas, the capacity of detention facilities was decided to make up for the lacking capacity of main sewers in case of the rainfall in July, 2001 as large flood. The average amount of stormwater detained in eight Cheonggyecheon drainage areas is $235.09m^3/ha$. Location and size of stormwater detention facilities is designed to have effects in short term by targeting the reduction of flood damage. Schools and parks are suggested as optimal locations where detention facilities are constructed in drainage areas.

Estimation of Storage Capacity for CSOs Storage System in Urban Area (도시유역 CSOs 처리를 위한 저류형시스템 설계용량 산정)

  • Jo, Deok Jun;Lee, Jung Ho;Kim, Myoung Su;Kim, Joong Hoon;Park, Moo Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.490-497
    • /
    • 2007
  • A Combined sewer overflows (CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available (which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a continuous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban drainage system used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range $3{\times}DWF$ (dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a decision of storage volume for CSOs reduction and water quality protection.

Improvement and application of SWMM-ING for carbon reduction in green infrastructure (그린인프라시설의 탄소저감을 위한 SWMM-ING 개선 및 적용성 평가)

  • Young Jun Lee;Chaeyoung Lee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.335-345
    • /
    • 2023
  • In Korea, as part of the Green New Deal project toward a carbon-neutral society, it is necessary to build a climate-resilient urban environment to green the city, space, and living infrastructure. To this end, SWMM-ING was improved and the model was modified to analyze the carbon reduction effect. In addition, I plan to select target watersheds where urbanization is rapidly progressing and evaluate runoff, non-point pollution, and carbon reduction effects to conduct cost estimation and optimal design review for domestic rainwater circulation green infrastructure. In this study, green infrastructure facilities were selected using SWMM-ING. Various scenarios were presented considering the surface area and annual cost of each green infrastructure facility, and The results show that the scenario derived through the APL2 method was selected as the optimal scenario. In this optimal scenario, a total facility area of 190,517.5 m2 was applied to 7 out of 30 subwatersheds to achieve the target reduction. The target reduction amount was calculated a 23.50 % reduction in runoff and a 26.99 % reduction in pollutant load. Additionally, the annual carbon absorption was analyzed and found to be 385,521 kg/year. I aim to achieve additional carbon reduction effects by achieving the goal of reducing runoff and non-point pollution sources and analyzing annual carbon absorption. Moreover, considering the scale-up of these interventions across the basin, it is believed that an objective assessment of economic viability can be conducted.

A Study on Removal Efficiency and Applicability of Natural Type Road Non-point Pollutant Reduction Facilities (자연형 도로 비점오염저감시설의 저감효율 및 적용성 연구)

  • Lee, Sang Hyuk;Cho, Hye Jin;Kim, Lee Hyung
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.9-17
    • /
    • 2014
  • PURPOSES : The purpose of this study is to assess removal efficiency of non-point pollutants and applicability for non-point pollutant reduction facilities by conducting the demonstration project operation. METHODS : In order to analyze removal efficiency of non-point pollutants for facilities such as a grassed swale, a small constructed wetland, a free water surface wetland, a horizontal sub-surface flow wetland, and a sand filtration, the field data including specifications of facilities, rainfall, inflow and runoff rainfall effluent etc. was acquired after occurring rainfall events, and the acquired data was analyzed for removal efficiency rate to assess road non-point pollutants facilities using event mean concentration (EMC) and summation of load (SOL) methods. RESULTS : The results of analyzing rainfall effluent, non-point pollutant sources showed that total suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), chrome (Cr), zinc (Zn), and lead (Pb) can be removed through non-point pollutant reduction facilities by 60.3% ~ 100%. Especially removal efficiency of TSS, COD and BOD is relatively higher than removal efficiency of other non-point pollutant sources in all kind of non-point pollutant facilities. CONCLUSIONS : Based on the result of this study, even though natural type of non-point pollutant reduction facilities for roads occupy small areas comparing with drainage basin areas, most of non-point pollutant sources would be removed through the facilities.

Analysis on the Effect of Infiltration Collector Well Installation on the Water Control (침투통의 설치에 따른 치수효과 분석)

  • Shim, Jae-hyun;Lee, Cheol-kyu;Lee, Jong-kook;Kim, Jin-young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.298-302
    • /
    • 2004
  • In this study, the runoff reduction effect was analyzed quantitatively focusing on the infiltration collector well located in the test area. On the basis of the analysis of the data obtained by examining the real-time measurement field data, the runoff reduction was examined through the measured rainfall of the year 2003 by applying the analysis result, with the PCSWMM model to the Kiheung-Gugal residential area, which is selected as the test basin. According to the analysis, it is revealed that an infiltration collector well can reduce up to $65\~98\%$ of runoffs, compared to a conventional one. For measured rainfalls, an infiltration collector well was able to reduce up to $15\~23\%$ of runoffs and $3\~25\%$ of peak runoffs. These results show that the effects of infiltration collector wells might vary with rainfall intensity and its duration. However, the infiltration collector well was confirmed as the one of the alternatives of runoff reduction facilities in urbanized catchment.

  • PDF

A study on the determination of location of the detention pond in trunk sewer for reducing runoff amounts (우수유출저감을 위한 간선저류지 위치선정에 관한 연구)

  • Lee, Sung Ho;Yoon, Sei Eui;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.4
    • /
    • pp.223-232
    • /
    • 2017
  • The ability to defend against floods in urban areas was weakened, because the increase in the impervious rate of urban areas due to urbanization and industrialization and the increase in the localized torrential rainfall due to abnormal climate. In order to reduce flood damage in urban areas, various runoff reduction facilities such as detention ponds and infiltration facilities were installed. However, in the case of domestic metropolitan cities, it is difficult to secure land for the installation of storm water reduction facilities and secure the budget for improving the aged pipelines. Therefore, it is necessary to design a storage system (called the detention pond in trunk sewer) that linked the existing drainage system to improve the flood control capacity of the urban area and reduce the budget. In this study, to analyze the effect of reducing runoff amounts according to the volume of the detention pond in trunk sewer, three kinds of virtual watershed (longitudinal, middle, concentration shape) were assumed and the detention pond in trunk sewer was installed at an arbitrary location in the watershed. The volume of the detention pond in trunk sewer was set to 6 cases ($1,000m^3$, $3,000m^3$, $5,000m^3$, $10,000m^3$, $20,000m^3$, $30,000m^3$), and the installation location of the detention pond in trunk sewer was varied to 20%, 40%, 60%, and 80% of the detention pond upstream area to the total watershed area (DUAR). Also, using the results of this study, a graph of the relationship and relational equation between the volume of the detention pond in trunk sewer and the installation location is presented.

Hydrologic and Environmental Assessment of an Infiltration Planter for Roof Runoff Use (지붕 빗물이용을 위하여 개발된 침투화분의 환경·수문학적 평가)

  • Moon, So-Yeon;Choi, Ji-Yeon;Hong, Jung-Sun;Yu, Gi-Gyung;Jeon, Je-Chan;Flores, Precious Eureka D.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • Due to urbanization and increase in impervious area, changes in natural water circulation system have become a cause of groundwater recharge reduction, streamflow depletion and other hydrological problems. Therefore, this study developed the infiltration planter techniques applied in an LID facility treating roof stormwater runoff such as, performance of small decentralized retention and infiltration through the reproduction of natural water circulation system and use of landscape for cleaning water. Assessment of an infiltration planter was performed through rainfall monitoring to analyze the water balance and pollutant removal efficiency. Hydrologic assessment of an infiltration planter, showed a delay in time of effluent for roof runoff for about 3 hours and on average, 79% of facilities had a runoff reduction through retention and infiltration. Based on the analysis, pollutant removal efficiency generated in the catchment area showed an average of 97% for the particulate matter, 94% for the organic matter and 86-96% and 92-93% for the nutrients and heavy metals were treated, respectively. Comparative results with other LID facilities were made. For this study, facilities compared the SA/CA to high pollutant removal efficiency for the determination to of the effectiveness of the facility when applied in an urban area.