• Title/Summary/Keyword: runoff of freshwater

Search Result 35, Processing Time 0.017 seconds

Changes in Environmental Factors and Primary Productivity in the Seomjin River Estuary (섬진강 하구역에서 환경요인 및 기초생산성의 변화)

  • YANG SUNG RYULL;SONG HWAN SEOK;KIM KWAN-CHUN;PARK CHUL;MOON CHANGHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.164-170
    • /
    • 2005
  • To investigate the aquatic environmental factors and processes controlling primary production in the Seomjin River estuary, chlorophyll a, nutrients, pH, SS, DO, temperature, salinity and primary productivity were measured in February, April, August and October, 2001. Primary productivity values ranged between 50.7 and 14,120.3 mg C $m^{-3} day^{-1}$ during the sampling period. In contrast to other estuaries, light condition did not seem to be the important limiting factor far primary production due to high water-column transparency during most of the time. The autumn bloom occurred in regions where salinity values ranged between 10 and 20 psu. This phenomenon appeared to develop every year and deserves further investigation. The behavior of nutrients, which is one of the major factors controlling the primary productivity, appeared to be governed by salinity regimes. The main source of nitrogenous nutrients seemed to be the freshwater runoff from the Seomjin River. However, that of phosphorus seemed to be from the industrial wastewater in Gwangyang area. The primary pro-duction of phytoplankton in the study area varied with space and time, showing a close correlation with water column transparency, and exhibited higher values compared to those of adjacent coastal regions in Gwangyang Bay.

Limiting Nutrient on Phytoplankton Growth in Gwangyang Bay (광양만에서 식물플랑크톤증식의 제한영양염)

  • Lee, Jae-Seong;Jung, Rae-Hong;Kim, Soung-Soo;Go, Woo-Jin;Kim, Kui-Young;Park, Jong-Soo;Lee, Young-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.201-210
    • /
    • 2001
  • Salinity, DIN, DIP, DIN/DIP and indigenous algal assay were determined to estimate the limiting nutrient for phytoplankton growth in Gwangyang Bay, South Sea of Korea. Seawater samples were collected at surface and bot-tom water in 4 November 1999 (dry season) and 2 September 2000 (after heavy rain). In 4 November 1999, the salinity, DIN, DIP and DIN/DIP were 29.92 psu, 13.59 ${\mu}M$, 3.41 ${\mu}M$ and 4.14 respectively. In 2 September 2000, These values were 24.62 psu, 27.77 ${\mu}M$, 2.82 ${\mu}M$ and 9.79 respectively. The DIN and DIP concentrations in this study were higher than Deukryang, Yeoja and Gamak Bay, South Sea of Korea. Especially, DIP concentration was 8 times high compared to Deutryang, Yeoja and Gamak Bay. The main sources of nitrogen seem to be freshwater runoff from Somjin River and industrial wastewater. But, the main sources of phosphorus seem to be industrial wastewater around Gwangyang Bay. The limiting nutrient was nitrogen at all station in 4 November 1999. The limiting nutrient was also nitrogen in 2 September 2000 in spite of heavy rain observed because of relatively much volume of phosphorus sup-plied from point sources than nitrogen. In case of below 20 psu in salinity by heavy rain, the limiting nutrient willbe shift from nitrogen to phosphorus at some area of Somjin River estuary. But the limiting nutrient will be never shift to phosphorus throughout Gwangyang Bay, eastern coast of Yeoja and Dolsan because of much volume of phosphorus runoff from point source in coastal area of Gwangyang Bay.

  • PDF

Spatio-Temporal Distribution of Nutrients in the Surface Waters of Deukryang Bay 1. Seasonal Variation of Nutrients and Limiting Factors for Primary Production (득량만 표층수중 영양염류의 시공간적 분포특성 -1. 영양염류의 계절변화와 기초생산 제한인자-)

  • YANG Han-Soeb;KIM Soung-Soo;KIM Guebuem
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.4
    • /
    • pp.475-488
    • /
    • 1995
  • In order to see the seasonal variation of nutrients and the limiting factors to the primary production in Deukryang Bay, both dissolved inorganic nutrients and salinity were measured in the surface waters during the periods from July 1992 to March 1993. The mean value of salinity was the lowest in ?all and the highest in early spring. Dissolved inorganic nitrogen (DIN) was the highest in winter and the lowest in summer. However, both phosphate and silicate were the highest in summer and the lowest in fall. Salinity was generally higher in the outer region than in the inner region of the bay.DIN content was nearly depleted (less than $2{\mu}M$) in summer. From fall to spring, DIN content was nearly depleted in the inner region and relatively high in the outer region of the Day. Phosphate was the highest in summer showing an opposite distribution pattern to salinity, and it was nearly depleted (less than $0.1{\mu}M$) in fall and winter. In spring, however, phosphate content was slightly high in the outer region. Silicate content showed an opposite distribution pattern to salinity in summer. in other seasons, However, the distribution pattern of silicate was similar to the salinity. DIN seemed to be a limiting factor for the primary production at all area of the bay in summer and at the inner region in other season. However, phosphate seemed to be a limiting factor at all area of the bay in fall and winter and at the inner region in spring. Silicate may limit the production of diatoms at the inner region of the bay in winter and spying. Both phosphate and silicate showed a good inverse relationship with salinity in summer, which indicates inputs of these nutrients from the freshwater runoff. In the other seasons, both nitrate and silicate showed a positive linear relationship with salinity in the outer region of the bay, suggesting that these two nutrients were mainly supplied by the inflow of the offshore costal water which had high nitrate content associated with vertical mixing.

  • PDF

Numerical Simulation of Residual Currents and tow Salinity Dispersions by Changjiang Discharge in the Yellow Sea and the East China Sea (황해 및 동중국해에서 양쯔강의 담수유입량 변동에 따른 잔차류 및 저염분 확산 수치모의)

  • Lee, Dae-In;Kim, Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.67-85
    • /
    • 2007
  • A three-dimensional hydrodynamic model with the fine grid is applied to simulate the barotropic tides, tidal currents, residual currents and salinity dispersions in the Yellow Sea and the East China Sea. Data inputs include seasonal hydrography, mean wind and river input, and oceanic tides. Computed tidal distributions of four major tides($M_2,\;S_2,\;K_1$ and $O_1$) are presented and results are in good agreement with the observations in the domain. The model reproduces well the tidal charts. The tidal residual current is relatively strong around west coast of Korea including the Cheju Island and southern coast of China. The current by $M_2$ has a maximum speed of 10 cm/s in the vicinity of Cheju Island with a anti-clockwise circulation in the Yellow Sea. General tendency of the current, however, is to flow eastward in the South Sea. Surface residual current simulated with $M_2$ and with $M_2+S_2+K_1+O_1$ tidal forcing shows slightly different patterns in the East China Sea. The model shows that the southerly wind reduces the southward current created by freshwater discharge. In summer during high runoff(mean discharge about $50,000\;m^3/s$ of Yangtze), low salinity plume-like structure(with S < 30.0 psu) extending some 160 km toward the northeast and Changjiang Diluted Water(CDW), below salinity 26 psu, was found within about 95 km. The offshore dispersion of the Changjiang outflow water is enhanced by the prevailing southerly wind. It is estimated that the inertia of the river discharge cannot exclusively reach the around sea of Cheju Island. It is noted that spatial and temporal distribution of salinity and the other materials are controlled by mixture of Changjiang discharge, prevailing wind, advection by flowing warm current and tidal current.

  • PDF

Determining Spatial and Temporal Variations of Surface Particulate Organic Carbon (POC) using in situ Measurements and Remote Sensing Data in the Northeastern Gulf of Mexico during El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$ (현장관측 및 원격탐사 자료를 이용한 북동 멕시코 만에서 El $Ni\tilde{n}o$와 La $Ni\tilde{n}a$ 기간 동안 표층 입자성 유기탄소의 시/공간적 변화 연구)

  • Son, Young-Baek;Gardner, Wilford D.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.51-61
    • /
    • 2010
  • Surface particulate organic carbon (POC) concentration was measured in the Northeastern Gulf of Mexico on 9 cruises from November 1997 to August 2000 to investigate the seasonal and spatial variability related to synchronous remote sensing data (Sea-viewing Wide Field-of-view Sensor (SeaWiFS), sea surface temperature (SST), sea surface height anomaly (SSHA), and sea surface wind (SSW)) and recorded river discharge data. Surface POC concentrations have higher values (>100 $mg/m^3$) on the inner shelf and near the Mississippi Delta, and decrease across the shelf and slope. The inter-annual variations of surface POC concentrations are relatively higher during 1997 and 1998 (El Nino) than during 1999 and 2000 (La Nina) in the study area. This phenomenon is directly related to the output of Mississippi River and other major rivers, which associated with global climate change such as ENSO events. Although highest river runoff into the northern Gulf of Mexico Coast occurs in early spring and lowest flow in late summer and fall, wide-range POC plumes are observed during the summer cruises and lower concentrations and narrow dispersion of POC during the spring and fall cruises. During the summer seasons, the river discharge remarkably decreases compared to the spring, but increasing temperature causes strong stratification of the water column and increasing buoyancy in near-surface waters. Low-density plumes containing higher POC concentrations extend out over the shelf and slope with spatial patterns and controlled by the Loop Current and eddies, which dominate offshore circulation. Although river discharge is normal or abnormal during the spring and fall seasons, increasing wind stress and decreasing temperature cause vertical mixing, with higher surface POC concentrations confined to the inner shelf.