• Title/Summary/Keyword: runoff modeling

Search Result 274, Processing Time 0.034 seconds

Evaluation of the Tank Model Optimized Parameter for Watershed Modeling (유역 유출량 추정을 위한 TANK 모형의 매개변수 최적화에 따른 적용성 평가)

  • Kim, Kye Ung;Song, Jung Hun;Ahn, Jihyun;Park, Jihoon;Jun, Sang Min;Song, Inhong;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.9-19
    • /
    • 2014
  • The objective of this study was to evaluate of the Tank model in simulating runoff discharge from rural watershed in comparison to the SWAT (Soil and Water Assessment Tool) model. The model parameters of SWAT was calibrated by the shuffled complex evolution-university Arizona (SCE-UA) method while Tank model was calibrated by genetic algorithm (GA) and validated. Four dam watersheds were selected as the study areas. Hydrological data of the Water Management Information System (WAMIS) and geological data were used as an input data for the model simulation. Runoff data were used for the model calibration and validation. The determination coefficient ($R^2$), root mean square error (RMSE), Nash-Sutcliffe efficiency index (NSE) were used to evaluate the model performances. The result indicated that both SWAT model and Tank model simulated runoff reasonably during calibration and validation period. For annual runoff, the Tank model tended to overestimate, especially for small runoff (< 0.2 mm) whereas SWAT model underestimate runoff as compared to observed data. The statistics indicated that the Tank model simulated runoff more accurately than the SWAT model. Therefore the Tank model could be a good tool for runoff simulation considering its ease of use.

Evaluating characteristics of runoff responses by rainfall direction (호우 방향성에 의한 유역 유출응답 특성 평가)

  • Park, Changyeol;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.5
    • /
    • pp.347-358
    • /
    • 2017
  • This study examined characteristic differences by the rainfall direction on the runoff responses. The directional characteristics of hydrological components in a basin were quantified by von Mises distribution. The runoff hydrograph was derived using the result of convolution integration of each distribution and this hydrograph was compared with GIUH model and observed data. As a result, it was found that runoff response by rainfall direction was more similar the observed rainfall-runoff data than the runoff result using GIUH model. These results implies that runoff modeling could be improved by considering directional components in hydrologic analysis. This study would be helpful to reduce uncertainties of hydrologic analysis considering a non-linearity of rainfall-runoff process by the rainfall direction.

Resampling for Roughness Coefficient of Surface Runoff Model Using Mosaic Scheme (모자이크기법을 이용한 지표유출모형의 조도계수 리샘플링)

  • Park, Sang-Sik;Kang, Boo-Sik
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.93-106
    • /
    • 2011
  • Physically-based resampling scheme for roughness coefficient of surface runoff considering the spatial landuse distribution was suggested for the purpose of effective operational application of recent grid-based distributed rainfall runoff model. Generally grid scale(mother scale) of hydrologic modeling can be greater than the scale (child scale) of original GIS thematic digital map when the objective basin is wide or topographically simple, so the modeler uses large grid scale. The resampled roughness coefficient was estimated and compared using 3 different schemes of Predominant, Composite and Mosaic approaches and total runoff volume and peak streamflow were computed through distributed rainfall-runoff model. For quantitative assessment of biases between computational simulation and observation, runoff responses for the roughness estimated using the 3 different schemes were evaluated using MAPE(Mean Areal Percentage Error), RMSE(Root-Mean Squared Error), and COE(Coefficient of Efficiency). As a result, in the case of 500m scale Mosaic resampling for the natural and urban basin, the distribution of surface runoff roughness coefficient shows biggest difference from that of original scale but surface runoff simulation shows smallest, especially in peakflow rather than total runoff volume.

Assessment of Feasibility of Rainfall-Runoff Simulation Using SRTM-DEM Based on SWMM (SWMM 기반 SRTM-DEM을 활용한 강우-유출 모의 가능성 평가)

  • Mirae Kim;Junsuk Kang
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.443-452
    • /
    • 2024
  • The recent increase in impermeable surfaces due to urbanization and the occurrence of concentrated heavy rainfall events caused by climate change have led to an increase in urban flooding. To predict and prepare for flood damage, a convenient and highly accurate simulation of rainfall-runoff based on geospatial information is essential. In this study, the storm water management model (SWMM) was applied to simulate rainfall runoff in the Bangbae-dong area of Seoul, using two sets of topographical data: The conventional topographic digital elevation model (TOPO-DEM) and the proposed shuttle radar topography mission (SRTM)-DEM. To evaluate the applicability of the SRTM-DEM for rainfall-runoff modeling, two DEMs were constructed for the study area, and rainfall-runoff simulations were performed. The construction of the terrain data for the study area generally reflected the topographical characteristics of the area. Quantitative evaluation of the rainfall-runoff simulation results indicated that the outcomes were similar to those obtained using the existing TOPO-DEM. Based on the results of this study, we propose the use of SRTM-DEM, a more convenient terrain data, in rainfall-runoff studies, rather than asserting the superiority of a specific geospatial data.

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spatial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triagulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triagular facets : the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally ; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spacial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2000.05a
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triangulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triangular facets: the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF

Evaluation of Sewer Capacity using Kinetic Hydraulic Model (동력학적 수리해석모델 해석을 통한 하수관거능력 평가)

  • Yang, Hae Jin;Jun, Hang Bae;Son, Dae Ik;Lee, Joon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.565-572
    • /
    • 2009
  • Hydraulic modeling is widely used to simulate wastewater flow. The simulated models are used to prevent flood and many other problems associated with wastewater flow in planning or rehabilitating sewer systems. In this study, MAKESW (An engineer, South Korea), MOUSE (DHI, Denmark), and SWMM (XPSoftware, USA) are used to for hydraulic modeling of wastewater in C-city, South Korea and E-city, Iraq. These modeling tools produced different results. SWMM comparably overpredicted runoff and peak flow. In using SWMM, use of accurate data with a high confidential level, detail examination over the target basin surface, and the careful selection of a runoff model, which describes Korea's unique hydraulic characteristics are recommended. Modification of existing models through the optimization of variables cannot be achieved at this moment. Setting up an integrated modeling environment is considered to be essential to utilize modeling and further apply the results for various projects. Standardization of GIS database, the criteria for and the scope of model application, and database management systems need to be prepared to expand modeling application.

Calculation of Runoff in Flood Basin Using GIS (GIS를 활용한 홍수유역의 유출량 산정)

  • 이형석;김인호
    • Spatial Information Research
    • /
    • v.11 no.2
    • /
    • pp.143-153
    • /
    • 2003
  • In order to investigate the effect of a pouring rain that it follows in the typhoon, the effect analysis with actual measurement data of rainfall outflow it follows in flood basin is necessary. Also there is a case that it analyzes with the fact that the rainfall occurs identically in whole basin in case of the rainfall outflow analysis, but the actual rainfall distribution from the basin very will be irregular and the interpretation which it reflects must become accomplished. It created spatial information of terrain, land use and the soil using GIS. It created topographical factor of the subject area and calculated CN(runoff curve number) with WMS(Watershed Modeling System). It calculated runoff using a HEC-1 model and the Rational Method connected at the WMS. By connecting GIS and WMS, it calculated the effect of a pouring rain and runoff from the construction area. Also it will be able to apply with a basic data in more efficient runoff analysis.

  • PDF

Parameter Optimization for Runoff Calibration of SWMM (SWMM의 유출량 보정을 위한 매개변수 최적화)

  • Cho, Jae-Heon;Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.435-441
    • /
    • 2006
  • For the calibration of rainfall-runoff model, automatic calibration methods are used instead of manual calibration to obtain the reliable modeling results. When mathematical programming techniques such as linear programming and nonlinear programming are applied, there is a possibility to arrive at the local optimum. To solve this problem, genetic algorithm is introduced in this study. It is very simple and easy to understand but also applicable to any complicated mathematical problem, and it can find out the global optimum solution effectively. The objective of this study is to develope a parameter optimization program that integrate a genetic algorithm and a rainfall-runoff model. The program can calibrate the various parameters related to the runoff process automatically. As a rainfall-runoff model, SWMM is applied. The automatic calibration program developed in this study is applied to the Jangcheon watershed flowing into the Youngrang Lake that is in the eutrophic state. Runoff surveys were carried out for two storm events on the Jangcheon watershed. The peak flow and runoff volume estimated by the calibrated model with the survey data shows good agreement with the observed values.

Assessing Unit Hydrograph Parameters and Peak Runoff Responses from Storm Rainfall Events: A Case Study in Hancheon Basin of Jeju Island

  • Kar, Kanak Kanti;Yang, Sung-Kee;Lee, Jun-Ho
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.437-447
    • /
    • 2015
  • Estimation of runoff peak is needed to assess water availability, in order to support the multifaceted water uses and functions, hence to underscore the modalities for efficient water utilization. The magnitude of storm rainfall acts as a primary input for basin level runoff computation. The rainfall-runoff linkage plays a pivotal role in water resource system management and feasibility level planning for resource distribution. Considering this importance, a case study has been carried out in the Hancheon basin of Jeju Island where distinctive hydrological characteristics are investigated for continuous storm rainfall and high permeable geological features. The study aims to estimate unit hydrograph parameters, peak runoff and peak time of storm rainfalls based on Clark unit hydrograph method. For analyzing observed runoff, five storm rainfall events were selected randomly from recent years' rainfall and HEC-hydrologic modeling system (HMS) model was used for rainfall-runoff data processing. The simulation results showed that the peak runoff varies from 164 to 548 m3/sec and peak time (onset) varies from 8 to 27 hours. A comprehensive relationship between Clark unit hydrograph parameters (time of concentration and storage coefficient) has also been derived in this study. The optimized values of the two parameters were verified by the analysis of variance (ANOVA) and runoff comparison performance were analyzed by root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) estimation. After statistical analysis of the Clark parameters significance level was found in 5% and runoff performances were found as 3.97 RMSE and 0.99 NSE, respectively. The calibration and validation results indicated strong coherence of unit hydrograph model responses to the actual situation of historical storm runoff events.