• Title/Summary/Keyword: runoff area

Search Result 1,006, Processing Time 0.033 seconds

Determination of EMC and Unit Loading of Rainfall Runoff from Forestry-Crops Field (산림과 밭 지역 강우 유출수의 EMC 및 원단위 산정)

  • Won, Chul-hee;Choi, Yong-hun;Seo, Ji-yeon;Kim, Ki-cheol;Shin, Min-hwan;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.615-623
    • /
    • 2009
  • The research of the determination of event mean concentration (EMC) was focussed combined sewer overflows and highway runoff in korea. But those of non-urban areas are few. In this study, EMC and unit loading on land use types in Nogok watershed were estimated by runoff loading of non-point source (NPS) on non-urban area. Two monitoring sites were equipped with an automatic velocity meter, flow meter, and water sampler. Monitoring was conducted at two monitering site during the rainy season. The results show that the EMC ranges in forest land use are 1.3~2.6 mg/L for BOD, 2.0~16.1 mg/L for SS, 0.1~2.1 mg/L for TN, and 0.12~0.49 mg/L for TP. The unit loading of NPS in this study was difficult to compare directly with that used conventionally because of the difference of field investigation. In near future, it needs to conduct more systematic and long-term research about NPS within the watershed. The results of this research can be used to estimate the total pollution load management system (TPLMS) program in korea.

Analysis of Water Cycle at Main Streams in Ulsan Using CAT Model (CAT 모형을 이용한 울산지역 주요 하천유역의 물순환 분석)

  • Lee, Sang Hyeon;Cho, Hong Je
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • This study aimed to analyze water cycle at Taehwa river, Dongcheon, Hoiya river and Cheongryang cheon in Ulsan city using CAT model developed by Korea Institute of construction technology. To apply CAT model, we separated Teahwa river into 25, Dongcheon into 11, Hoiya river into 17 and Cheongryangcheon into 5 subbasins and discriminated between contribution runoff basins and source basins. The results of water cycle analysis performed using rainfall datas measured from 1975 and 2008 and hydrologic datas of change of land use etc. were that surface runoff increase and interflow decrease, caused by the increase of impervious area. The increases of surface runoff at the basin of Taehwa river and Dongcheon which is a tributary of Taehwa river were small and similar to each other respectively as 1.7% and 2.4%, and increased high rate of 3.2% and 7.7% in Hoiya river and Cheongryangcheon including subbasins which are having high rate of urbanization.

LIDMOD3 Development for Design and Evaluation of Low Impact Development (저영향개발기법 설계 및 평가를 위한 LIDMOD3 개발)

  • Jeon, Ji-Hong;Seo, Seong-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.382-390
    • /
    • 2018
  • In this study, the LIDMOD3 was developed to design and evaluate low impact development (LIDMOD). In the same fashion, the LIDMOD3 employs a curve number (NRCS-CN) method to estimate the surface runoff, infiltration and event mean concentration as applicable to pollutant loads which are based on a daily time step. In these terms, the LIDMOD3 can consider a hydrologic soil group for each land use type LID-BMP, and the applied removal efficiency of the surface runoff and pollutant loads by virtue of the stored capacity, which was calculated by analyzing the recorded water balance. As a result of Model development, the LIDMOD3 is based on an Excel spread sheet and consists of 8 sheets of information data, including: General information, Annual precipitation, Land use, Drainage area, LID-BMPs, Cals-cap, Parameters, and the Results. In addition, the LIDMOD3 can estimate the annual hydrology and annual pollutant loads including surface runoff and infiltration, the LID efficiency of the estimated surface runoff for a design rainfall event, and an analysis of the peak flow and time to peak using a unit hydrolograph for pre-development, post-development without LID, and as calculated with LID. As a result of the model application as applied to an apartment, the LIDMOD3 can estimate LID-BMPs considering a well spatical distributed hydroloic soil group as realized on land use and with the LID-BMPs. Essentially, the LIDMOD3 is a screen level and simple model which is easy to use because it is an Excel based model, as are most parameters in the database. This system can be expected to be widely used at the LID site to collect data within various programmable model parameters for the processing of a detail LID model simulation.

Rainfall-Runoff Analysis Utilizing Multiple Impulse Responses (복수의 임펄스 응답을 이용한 강우-유출 해석)

  • Yoo, Chul-Sang;Park, Joo-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.537-543
    • /
    • 2006
  • There have been many recent studies on the nonlinear rainfall-runoff modeling, where the use of neural networks is shown to be quite successful. Due to fundamental limitation of linear structures, employing linear models has often been considered inferior to the neural network approaches in this area. However, we believe that with an appropriate extension, the concept of linear impulse responses can be a viable tool since it enables us to understand underlying dynamics principles better. In this paper, we propose the use of multiple impulse responses for the problem of rainfall-runoff analysis. The proposed method is based on a simple and fixed strategy for switching among multiple linear impulse-response models, each of which satisfies the constraints of non-negativity and uni-modality. The computational analysis performed for a certain Korean hydrometeorologic data set showed that the proposed method can yield very meaningful results.

Distributed Rainfall-Runoff Modeling Using GIS (GIS를 이용한 분산형 강우-유형 모형의 개발)

  • 김경숙;박종현;윤기준;이상호
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.2
    • /
    • pp.1-16
    • /
    • 1995
  • This study is conducted to eveluate the potential of a GIS to assist an application problem. GIS has been applied to rainfall-runoff modeling over Soyang area. Various rainfall-runoff models have been developed over the years. A distributed rainfall-runoff model is selected because it considers the topographic characteristics over the basin. GIS can handle the spatial data to enhance the modeling. GRASS-a public domain GIS S/W-is used for GIS tools. Digital database is generated, including soil map, vegetation map, digital elevation model, basin and subbasin map, and water stream. The inpu data for the model has been generated and manupulated using GIS. The database, model and GIS are integrated for on-line operation. The inflow hydrographs are tested for the flood of Sept., 1990. This shows the promising results even without the calibration.

An Analysis of the Effect of Climate Change on Nakdong River Environmental Flow (낙동강 유역 환경유량에 대한 기후변화의 영향 분석)

  • Lee, A Yeon;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.273-285
    • /
    • 2011
  • This study describes the modeling of climate change impact on runoff across southeast Korea using a conceptual rainfall-runoff model TANK and assesses the results using the concept of environmental flows developed by International Water Management Institute. The future climate time series is obtained by scaling the historical series, informed by 4 global climate models and 3 greenhouse gas emission scenarios, to reflect a $4.0^{\circ}C$ increase at most in average surface air temperature and 31.7% increase at most in annual precipitation, using the spatio-temporal changing factor method that considers changes in the future mean seasonal rainfall and potential evapotranspiration as well as in the daily rainfall distribution. Although the simulation results from different global circulation models and greenhouse emission scenarios indicate different responses in flows to the climate change, the majority of the modeling results show that there will be more runoff in southeast Korea in the future. However, there is substantial uncertainty, with the results ranging from a 5.82% decrease to a 48.15% increase in the mean annual runoff averaged across the study area according to the corresponding climate change scenarios. We then assess the hydrologic perturbations based on the comparison between present and future flow duration curves suggested by IMWI. As a result, the effect of hydrologic perturbation on aquatic ecosystems may be significant at several locations of the Nakdong river main stream in dry season.

Evaluation of Nonpoint Pollutant Management Effect by Application of Organic Soil Ameliorant Based on Renewable Resources in Urban Watershed (도시유역에서 재생자원기반 유기성 토량개량제 적용에 따른 비점오염물질 관리 효과 평가)

  • Yoonkyung Park;Chang Hyuk Ahn
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.3
    • /
    • pp.131-139
    • /
    • 2024
  • This study investigated the chemical properties of Organic Soil Amendments (OSAs) made from organic waste. It also assessed the effectiveness of using these OSAs in the soil layer of Green Infrastructure (GI) to reduce stormwater runoff and non-point source pollutants. The goal was to improve the national environmental value through resource recycling and contribute to the circular economy transformation and carbon neutrality of urban GI. The OSAs used in this study consisted of spent coffee grounds and food waste compost. They were found to be nutrient-rich and stable as artificial soils, indicating their potential use in the soil layer of GI facilities. Applying OSAs to bio-retention cells and permeable pavement resulted in a reduction of approximately 11-17% in stormwater runoff and a decrease of about 16-18% in Total Phosphorus (TP) discharge in the target area. Increasing the proportion of food waste compost in the OSAs had a positive impact on reducing stormwater runoff and pollutant emissions. This study highlights the importance of utilizing recycled resources and can serve as a foundation for future research, such as establishing parameters for assessing the effectiveness of GI facilities through experiments. To enable more accurate analysis, it is recommended to conduct studies that consider both the chemical and biological aspects of substance transfer in OSAs.

Development of CREAMS-PADDY Model for Simulating Pollutants from Irrigated Paddies (관개 논에서의 영양물질 추정 모형의 개발)

  • 서춘석;박승우;김상민;강문성;임상준;윤광식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.3
    • /
    • pp.146-156
    • /
    • 2002
  • The objective of this study was to develop a modified CREAMS model for paddy field conditions. The model simulates daily balance of water and nutrient from irrigated paddies using meteorological, irrigation, and agricultural management data. The model simulates daily evapotranspiration of paddy using Penman equation and determines daily flooding depth changes. Total nitrogen and phosphorus concentrations within flooding water, surface runoff, and leaching water from a paddy field also can be simulated. Parameters of the model were calibrated using observed data of the Agricultural Experiment Station of the Seoul National University in Suwon Korea. The model was applied for the irrigation period of paddy field in Gicheon area when 1,234 mm annual rainfall was occurred. The simulated losses of the total nitrogen and total phosphorous were 11.27 kg/ha and 0.98 kg/ha, respectively. There was a good agreement between observed and simulated data. It was found that CREAMS-PADDY model was capable of predicting runoff and nutrient losses from irrigated paddy fields.

기상, 유출, 하수관로 유동 모형과 ArcView를 결합한 하수도 시설 관리 시스템의 개발 및 적용

  • 김준현;한영한;박형춘;한미덕
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1999.12a
    • /
    • pp.26-29
    • /
    • 1999
  • An integrated sewer management system was developed for the analysis of sewer flow and for optimal operation of sewer works using ArcView and SWMM. SWMM and ArcView were dynamically linked together using Avenue in order to construct user-friendly management system. The developed system was applied to a residential area in Choonchun city to verify its utilities. All the relevant field data were analyzed on the basis of developed system, and the modeling of sewer flow was implemented using MET, RUNOFF, TRANSPORT in SWMM. As this system can provide comprehensive prediction of flow and pollution profiles, it could serve as a tool not only for optimal management, but also for decision support system to examine the efficiency of planning and implementation of sewer projects.

  • PDF

Estimation of BOD Loading of Diffuse Pollution from Agricultural-Forestry Watersheds (농지-임야 유역의 비점원 발생 BOD 부하의 추정)

  • Kim, Geonha;Kwon, Sehyug
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.617-623
    • /
    • 2005
  • Forestry and agricultural land uses constitute 85% of Korea and these land uses are typically mixed in many watersheds. Biological Oxygen Demand (BOD) concentration is a primary factor for managing water qualities of the water resources in Korea. BOD loadings from diffuse sources, however, not well monitored yet. This study aims to assess BOD loadings from diffuse sources and their affecting factors to conserve quality of water resources. Event Mean Concentration (EMC) of BOD was calculated based on the monitoring data of forty rainfall events at four agricultural-forestry watersheds. Exceedence cumulative probability of BOD EMCs were plotted to show agricultural activities in a watershed impacts on the magnitude of EMCs. Prediction equation for each rainfall event was proposed to estimate BOD EMCs: $EMC_{BOD}(mg/L)=EXP(0.413+0.0000001157{\times}$(discharged runoff volume in $m^3$)+0.018${\times}$(ratio of agricultural land use to total watershed area).