• Title/Summary/Keyword: run-out distance

Search Result 27, Processing Time 0.024 seconds

An anatomical study on the branching patterns of left coronary artery in the rats (흰쥐 왼쪽관상동맥의 분지 양상에 관한 해부학적 연구)

  • Ahn, Dong-Choon;Kim, In-Shik
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.1
    • /
    • pp.7-17
    • /
    • 2007
  • The left main descending artery (LMDA) of left coronary artery (LCA) in rats runs around the left side of conus arteriosus after arising from the aortic sinus and descends to the apex of heart with branching several branches into the wall of left ventricle (LV). The ligation site of LMDA for myocardial infarction (MI) is the 2~4 mm from LCA origin, between the pulmonary trunk and left auricle. The characteristics that rat heart has no interventricular groove on the surface and its coronary arteries run intramyocardially with branching several branches give the difficulty in surgery for MI which resulted in expected size. This study was aimed to elucidate the branching patterns of the left coronary artery for analysis of MI size and for giving the basic data to producing small MI intentionally in 2 male species that are widely used, Sprague-Dowley (SD) and Wistar-Kyoto (WKY), in the world. Red latex casting was followed by the microdissection in 27 and 28 hearts of SD and WKY male rats, respectively. The branching patterns of LMDA were classified into 3 major types and others based on the left ventricular branches (L). The Type I, Type II, Type III and others are shown in 55.6%, 22.2%, 14.8%, and 7.4% in SD, 60.7%, 10.7%, 7.1%, and 21.5% in WKY, respectively. The branching number of the first left ventricular branch (L1) that are distribute the upper one third of LV was 1.2~1.5, and its branching sites were ranging 0.9~2.1 ßÆ from LCA origin. L2, the second left ventricular branch distributing middle one third of LV, was the number of 1.2~1.4 and branching out ranging 5.1~5.7 mm. L3, the third left ventricular branch of LMDA distributing lower one third of LV, was the number of 1~1.5 and branching out ranging 7.0~9.3 mm from LCA origin. The common branch of L1 and L2 was branched from LMDA with the number of 1.1, and its site was located in the distance of mean of 1.5 mm and 2.8 mm in SD and WKY, respectively. The common branch of L2 and L3 was branched from LMDA with the number of 1, and its site was located in the distance of mean of 7.2 mm and 2.9 mm in SD and WKY, respectively. The right ventricular branches (R) of LMDA were short and branched in irregularly compared with L. The number of 1~4 of R were branched from LMDA. With regarding to the distribution area of L and the ligation site for MI, moderate MI (25~35% of LV) might be resulted in 70.4% and 60.7% in SD and WKY rats. Small MI might be produced intentionally if the ligation would be located at the 4~6 mm from LCA origin in the left side of LMDA. These data wold be helpful to expect the size of MI and to reproduce of small MI, intentionally, in rat hearts.

Evaluation and Complement of the Representativeness of Air Quality Monitoring Stations Using Passive Air Samplers (수동측정기에 의한 대기오염 자동측정망의 지역대표성 조사 및 보완방완에 대한 기초연구)

  • 우정현;김선태;김정욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.6
    • /
    • pp.415-426
    • /
    • 1997
  • Some arguments have been about over the representativeness of government-run air quality monitoring stations among scholars and non-governmental organizations (NGOs). However, it is not a simple problem to move monitoring stations because of continuity of data and high cost. So it is necessary to complement the monitoring data if it do not represent the ambient air quality properly. The purpose of this study was to evaluate the representativeness of some monitoring stations using passive $NO_2$ samplers and to find a complementary method from linear regression. Two stations were chosen for the evaluation: Shinlim Station was one of the most controversial stations in Seoul and Banpo Station had the best reputation. Air qualities were surveyed at seven points around each monitoring station with consideration of land use and distance. The ratios of the average $NO_2$ levels of the areas to these at the monitoring stations were 1.59 for Shinlim Station and 1.03 for Banpo Station. The differences between the average $NO_2$ levels and those at the monitoring stations were 10.75 ppb for Shilim Station and 0.34 ppb for Banpo Station. The correlation coefficients between the two levels were 0.7668 for Shinlim and 0.7662 for Banpo. The average coefficients of determination $(R^2)$ were 0.61 for Shinlim and 0.61 for Banpo. The Shinlim Station could not represent the air quality of Shinlim-Dong good because it is located in a green area at an outskirt of Shinlim-Dong. But the Banpo Station located in a central residential area of Banpo-Dong showed a fair representativeness. However, air quality turned out to be different with land use such as residential area, green area or road: the air quality data from a monitoring station located at a certain land use should not be interpreted as representing the air quality at any sites around the station. Equations to predict the average $NO_2$ levels of each area from the data from the monitoring stations were presented based on linear regression.

  • PDF

A Study on the Propagation Model according to the Geometric Structures of Roads (도로의 기하구조에 따른 전파모델 연구)

  • Kim, Song-Min
    • 전자공학회논문지 IE
    • /
    • v.46 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • This study was to simulate it that the sending receiving vehicles run on the general national roads with the one-way two-lanes at 80[km/h] speed. This study was to select 280[m] radius of curvature based on the statistical data with high rate of traffic accidents, 140[m] length of direct roads considering the stopping stadia, 90[m] length of curve, and 8 points of curved roads at 11.25[m] intervals. As a result above, when the distance between the sending and receiving vehicles became more than 111[m], the propagation path of reflected wave by the adjacent vehicles became longer than the propagation path of reflected wave by the left/right reflectors because the number of repeated reflection increased. In this study, the repeated reflection for the propagation's reach to the receiving vehicles was about $1{\sim}2$[times] as it supposed it less than 111[m]. Accordingly, it found out that the propagation path of reflected wave received through the left/right reflectors was about $1{\sim}1.5[m]$ larger than the reflected wave produced by the adjacent vehicles regardless of lanes on which the sending and receiving vehicles were located.

Usefulness of Image Registration in Brain Perfusion SPECT (Brain Perfusion SPECT에서 Image Registration의 유용성)

  • Song, Ho-June;Lim, Jung-Jin;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.60-64
    • /
    • 2011
  • Purpose: The brain perfusion SPECT is the examination which is able to know adversity information related brain disorder. But brain perfusion SPECT has also high failure rates by patient's motions. In this case, we have to use two days method and patients put up with many disadvantages. We think that we don't use two days method in brain perfusion SPECT, if we can use registration method. So this study has led to look over registration method applications in brain perfusion SPECT. Materials and Methods: Jaszczak, Hoffman and cylindrical phantoms were used for acquiring SPECT image data on varying degree in x, y, z axes. The phantoms were filled with $^{99m}Tc$ solution that consisted of a radioactive concentration of 111 MBq/mL. Phantom images were acquired through scanning for 5 sec long per frame by using Triad XLT9 triple head gamma camera (TRIONIX, USA). We painted the ROI of registration image in brain data. So we calculated the ROIratio which was different original image counts and registration image counts. Results: When carring out the experiments under the same condition, total counts differential was from 3.5% to 5.7% (mean counts was from 3.4% to 6.8%) in phantom and patients data. In addition, we also run the experiments in the double activity condition. Total counts differential was from 2.6% to 4.9% (mean counts was from 4.1% to 4.9%) in phantom and patients data. Conclusion: We can know that original and registration data are little different in image analysis. If we use the image registration method, we can improve disadvantage of two days method in brain perfusion SPECT. But we must consider image registration about the distance differences in x, y, z axes.

  • PDF

A Field test of an Integrated Electronic Block System for verification of the suitability (통합형 전자폐색제어장치의 적합성 확인을 위한 현장시험)

  • Kim, Young-June;Baek, Jong-Hyen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6427-6433
    • /
    • 2013
  • For trains to run safely and quickly, the train should always follow the preceding train at a proper spacing. For this purpose, a certain distance between the stations is set for each block section. For the safe operation of trains in one block section, only one train service for an automatic block system is needed. The existing block system is composed an ABS, which is a linked track circuit and line sideway system through the interlocking system. The interlocking system is being replaced with a domestic electronic interlocking system. On the other hand, the block system still uses the relay format of an analog system, and is independently installed of the line sideway systems. Therefore, the existing block system has many problems in terms of construction and maintenance. In addition, the existing domestic line is used for ABS and LEU , which is installed separately, despite the train being controlled by the information of the same signal at the same location. This is not efficient in terms of each product price and the maintenance costs. This paper introduces an integrated electronic block system and the field test results. The field test was carried out through a periodic inspection performed eight times from January to late August.

A Reappraisal of Rural Public Service Location: the Case of Postal Facilities (農村地域의 郵政施設 立地問題)

  • Huh, Woo-Kung
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.1
    • /
    • pp.1-18
    • /
    • 1996
  • This study examines the spatial characteristics of postal office patronage in rural areas. in the light of future possible relocation and closures of the postal facilities. Most of private services have flown out small rural central places due to the decrease of supporting population, and there consequently remain only a few public services including government-run post offices at the Myon seats, the lowest level among rural central places in Korea. The small local population and its further decline undermine the rationale for maintaining such public services in depleted rural areas. For the worse of it, the government recently plans to transform the postal system to a quasi-private, corporational structure. One can fear that the profit-seeking nature of the new postal corporation will inevitably force to close many of such small rural facilities. The study first analysed nation-wide censuses of postal offices for the years of 1986 and 1992. The postal services examined are per capita number of postal stamps and revenue stamps sold, and letters, parcels, telegrams and monetary transactions handled at the post offices. It is found that, while the usage of postal services has increased substantially throughout the nation during the period of 1986-1992, the increment has largely been occurred by urban post offices rather than by those in Gun seats (i.e., rural counties); and that the gap of the service levels between urban and rural post offices is ever widening. The study further examined the service differentials among the post offices within rural counties to find that those post offices adjacent to the county (Gun) seats and larger urban centers rendered less amount of services than remote rural post offices, indicating that rural residents tend to partonize larger centers more and more than local Myon seats. At the second stage of the study, questionnaire surveys were conducted in Muju, Kimpo, and Hongsung-Gun's. These three counties are meant to represent respectively the remote, suburban, and intermediary counties in Korea. The analyses of survey data reveal that the postal hinterlands of the county seats extend to much of nearby Myons, the subdivisions of a Gun. It is also found that the extent of postal hinterlands of the three counties and the magnitude of patronage and quite different from each other depending upon the topography, population density, and the propinquity of the counties to metropolitan centers. The findings suggest to reappraise the current flat allocation scheme of public facilites to each of rural subdivisions throughout the nation. A detailed analysis on the travel behavior of the survey respondents yields that age is the most salient variable to distinguish activity spaces of rural residents. The activity spaces of older respondents tend to be more limited within their Myon, whereas those of younger respondents extend across the Myon boundary, toward the central towns and even distant larger cities. The very existence of several activity spaces in rural areas calls for an attention in the future locational decisions of public facilities. The locational criteria, employed by the Ministry of Communication of Korean government to establish a post office, are the size of hinterland population and the distance from adjacent postal facilities. The present study findings suggest two additional criteria: the order in rural central place hierarchy and the propinquity to the upper-level centers of the central hierarchy. These old and new criteria are complementary each other in that the former criteria are employed to determine new office locations, whereas the latter are appropriate to determine facility relocation and closures.

  • PDF

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF