• Title/Summary/Keyword: ruminal fermentation

Search Result 375, Processing Time 0.026 seconds

Effects of Different Levels of Concentrate in Complete Rations on Nutrient Digestibilities and Ruminal Metabolites in Sheep and Growth Performance in Korean Native Bulls

  • Baik, M.G.;Ha, J.K.;Kim, W.Y.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.4
    • /
    • pp.371-377
    • /
    • 1997
  • Objective of the present study were to investigate effects of different levels of concentrate in complete rations on nutrient digestibilities and ruminal fermentation in sheep and growth performance in Korean native bulls. Increasing levels of concentrate (35, 50, 65, and 80% of complete rations) improved digestibilities of dry matter (DM), crude protein (CP) and ether extract (EE) without affecting digestibility of neutral detergent (NDF) and acid detergent fiber (ADF). Increasing levels of concentrate decreased ruminal fluid pH but increased concentrations of $NH_3-N$, propionic acid, and total volatile fatty acids (VFA). Both the disappearance rates of DM and nitrogen (N) in an in sacco study were linearly increased as the levels of concentrate in complete rations increased. Meanwhile, increasing levels of concentrate in complete rations improved growth rate and feed conversion ratio in Korean native bulls. In conclusion, the complete rations containing 80% concentrate showed better digestibility and energy supply than those of the lower levels (35, 50 and 65%) of concentrate of the rations, resulting in improved growth performance of Korean native bulls.

Effects of Rumen Protected Choline on In vitro Ruminal Fermentation and Milk Production and Its Composition in Lactating Cows (반추위 보호 Choline이 In vitro 반추위 발효특성과 착유우의 유생산 및 유조성분에 미치는 영향)

  • Park, Byung-Ki;Kim, Byong-Wan;Jang, Hyun-Yong;Shin, Jong-Suh
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.3
    • /
    • pp.255-264
    • /
    • 2008
  • This study was conducted to evaluate the effects of rumen protected choline on in vitro ruminal fermentation and milk production and its composition in Holstein cows. Experiments were done with three treatment groups, basal diet without any supplement (T1), basal diet+23g/d of mixture of choline and wheat shorts (T2) and basal diet + 25.56 g/d of rumen protected choline (T3). The in vitro ruminal pH and ammonia concentrations were similar for three treatments during all incubation periods except for the in vitro ruminal pH on 3 hr incubation and ammonia concentrations on 9 hr incubation. No significant difference was found in the concentrations of acetate and total-VFA. The propionate and butyrate concentrations were not affected by the rumen protected choline except on 6 hr incubation on which the propionate and butyrate concentrations were intermediate (8.98 mg/dl) and least (3.22 mg/dl), respectively. Higher milk yield and milk fat and lactose were resulted in the rumen protected choline. However, the rumen protected choline did not affect the milk protein, solids not fat, total solids, MUN, somatic cell count. It is concluded that the rumen protected choline can be effective materials to improve the milk production, milk fat and lactose without little change on in vitro ruminal fermentation.

Effects of Non-ionic Surfactants on Enzyme Distributions of Rumen Contents, Anaerobic Growth of Rumen Microbes, Rumen Fermentation Characteristics and Performances of Lactating Cows

  • Lee, S.S.;Ahn, B.H.;Kim, H.S.;Kim, C.H.;Cheng, K.-J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.104-115
    • /
    • 2003
  • A series of experiments was carried out to determine the possibility for the non-ionic surfactant (NIS) as a feed additive for ruminant animals. The effect of the NIS on (1) the enzyme distribution in the rumen fluids of Hereford bulls, (2) the growth of pure culture of rumen bacteria and (3) rumen anaerobic fungi, (4) the ruminal fermentation characteristics of Korean native cattle (Hanwoo), and (5) the performances of Holstein dairy cows were investigated. When NIS was added to rumen fluid at the level of 0.05 and 0.1% (v/v), the total and specific activities of cell-free enzymes were significantly (p<0.01) increased, but those of cell-bound enzymes were slightly decreased, but not statistically significant. The growth rates of ruminal noncellulolytic species (Ruminobacter amylophilus, Megasphaera elsdenii, Prevotella ruminicola and Selenomonas ruminantium) were significantly (p<0.01) increased by the addition of NIS at both concentrations tested. However, the growth rate of ruminal cellulolytic bacteria (Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and Butyrivibrio fibrisolvens) were slightly increased or not affected by the NIS. In general, NIS appears to effect Gram-negative bacteria more than Gram-positive bacteria; and non-cellulolytic bacteria more than cellulolytic bacteria. The growth rates of ruminal monocentric fungi (Neocallimastix patriciarum and Piromyces communis) and polycentric fungi (Orpinomyces joyonii and Anaeromyces mucronatus) were also significantly (p<0.01) increased by the addition of NIS at all concentrations tested. When NIS was administrated to the rumen of Hanwoo, Total VFA and ammonia-N concentrations, the microbial cell growth rate, CMCase and xylanase activities in the rumen increased with statistical difference (p<0.01), but NIS administration did not affect at the time of 0 and 9 h post-feeding. Addition of NIS to TMR resulted in increased TMR intake and increased milk production by Holstein cows and decreased body condition scores. The NEFA and corticoid concentrations in the blood were lowered by the addition of NIS. These results indicated that the addition of NIS may greatly stimulate the release of some kinds of enzymes from microbial cells, and stimulate the growth rates of a range of anaerobic ruminal microorganisms, and also stimulate the rumen fermentation characteristics and animal performances. Our data indicates potential uses of the NIS as a feed additive for ruminant animals.

Effect of Dietary Supplementation of Sodium Salt of Isobutyric Acid on Ruminal Fermentation and Nutrient Utilization in a Wheat Straw Based Low Protein Diet Fed to Crossbred Cattle

  • Misra, A.K.;Thakur, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.4
    • /
    • pp.479-484
    • /
    • 2001
  • The effect of dietary supplementation of sodium salt of isobutyric acid in low protein (10% CP) wheat straw based diet on nutrient utilization and rumen fermentation was studied in ruminally fistulated male crossbred cattle. The study included a 7 day metabolism and a 3 day rumen fermentation trials. The cattle were distributed into two equal groups of 4 each. The animals of control group were fed a basal diet consisting of wheat straw, concentrate mixture and green maize fodder in 40:40:20 proportion whereas branched chain volatile fatty acid (BCFA) supplemented group received a basal diet + isobutyric acid at 0.75 percent of basal diet. The duration of study was 36 days. The feed intake between experimental groups did not differ significantly and the average total DMI (% BW) was 2.01 and $2.28kg\;day^{-1}$ in control and BCFA supplemented diets. The dietary supplementation of BCFA improved (p<0.05) the DM, OM, NDF and cellulose digestibility by 4.46, 6.63, 10.57 and 11.31 per cent over those fed control diet. The total N retention on BCFA supplementation was improved (p<0.01) due to decreased (p<0.05) urinary N excretion. The concentrations of ruminal total N was 37.07 and $34.77mg\;100ml^{-1}$ in control and BCFA fed groups, respectively. Dietary supplementation BCFA significantly (p<0.01) reduced the ruminal ammonia N concentration as compared to control and the mean values ($mg\;100ml^{-1}$) were 13.18 and 9.42 in control and BCFA fed groups. The total VFA concentration was higher (p<0.01) in BCFA supplemented group (101.14 mM) than the control (93.05 mM). Among the VFAs, the molar proportion of acetate was higher (p<0.01) in BCFA supplemented group (71.07 mM) as compared to control (64.98 mM). However, the concentration of propionate and butyrate remained unchanged. Amino acids composition of bacterial hydrolysates was similar in both the groups. Ruminal outflow rate of liquid digesta was higher (p<0.01) in BCFA fed group ($67.56l\;day^{-1}$) than control ($52.73l\;day^{-1}$). It is concluded that the dietary supplementation of Na-salt of isobutyric acid in low protein diet improved the nutrient utilization and ruminal fermentation characteristics.

Effects of Green Tea (Camellia sinensis) Waste Silage and Polyethylene Glycol on Ruminal Fermentation and Blood Components in Cattle

  • Nishida, T.;Eruden, B.;Hosoda, K.;Matsuyama, H.;Nakagawa, K.;Miyazawa, T.;Shioya, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1728-1736
    • /
    • 2006
  • The effects of green tea (Camellia sinensis) waste silage and supplemental polyethylene glycol (PEG) on rumen fermentation and blood components were studied in cattle. Six Holstein steers were fed three diets in a 3${\times}$3 Latin square design, replicated twice. One diet was a control with no added silage, and the other two diets were supplemented (20% of the dry matter) with green tea waste silage either with (PEG) or without PEG (tea). Most of the fermentation parameters including major volatile fatty acids (VFA) were not affected by the diet treatments. The concentrations of high density lipoprotein cholesterol in the PEG group and urea nitrogen in the tea and PEG groups were greater than those in the control before morning feeding. The plasma 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid equivalent concentration was not different before morning feeding, but 3 h after morning feeding, its concentrations in both the tea and PEG groups were higher than in the control. Although the concentration of plasma vitamin A in the animals was not affected by feeding green tea waste silage, the concentrations of plasma vitamin E were significantly higher in the tea and PEG groups than in the control, both before and 3 h after morning feeding. The results from the present study suggest that feeding diets containing 20% of the dietary dry matter as green tea waste silage to Holstein steers has no negative impact on their ruminal fermentation, and increases their plasma antioxidative activity and concentration of vitamin E.

Effects of different dietary ratio of metabolizable glucose and metabolizable protein on growth performance, rumen fermentation, blood biochemical indices and ruminal microbiota of 8 to 10-month-old dairy heifers

  • Sun, Jie;Xu, Jinhao;Ge, Rufang;Wang, Mengzhi;Yu, Lihuai;Wang, Hongrong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1205-1212
    • /
    • 2018
  • Objective: The aim of this experiment was to evaluate the effects of different dietary ratio of metabolizable glucose (MG) to metabolizable protein (MP) on growth performance, blood metabolites, rumen fermentation parameters and the ruminal microbial community of 8 to 10-month-old heifers. Methods: A total of 24 Holstein heifers weighing an average of 282.90 kg (8 month of age) were randomly assigned to four groups of six. The heifers were fed one of four diets of different dietary MG/MP (0.97, 1.07, 1.13, and 1.26). Results: The results showed that the ratio of MG/MP affected the growth performance, blood metabolites, rumen fermentation parameters and the ruminal microbial community of heifers. The average daily gain of heifers was enhanced by increasing the ratio of MG/MP (p<0.05). The concentration of blood urea nitrogen, cholesterol, and low density lipoprotein cholesterol as well as the concentration of total volatile fatty acid in the rumen fluid of heifers decreased with the improvement in the ratio of dietary MG/MP (p<0.05). However, the relative amount of Ruminococcus albus and Butyrivibrio fibrisolvens in the rumen of heifers was increased significantly (p<0.05) when the dietary MG/MP increased. At the same time, with the improvement in dietary MG/MP, the amount of Fibrobacter succinogenes increased (p = 0.08). Conclusion: A diet with an optimal ratio (1.13) of MG/MP was beneficial for the improvement of growth, rumen fermentation, dietary protein and energy utilization of 8 to 10-month-old dairy heifers in this experiment.

Rumen fermentation and microbial diversity of sheep fed a high-concentrate diet supplemented with hydroethanolic extract of walnut green husks

  • Huan Wei;Jiancheng Liu;Mengjian Liu;Huiling Zhang;Yong Chen
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.655-667
    • /
    • 2024
  • Objective: This study aimed to assess the impact of a hydroethanolic extract of walnut green husks (WGH) on rumen fermentation and the diversity of bacteria, methanogenic archaea, and fungi in sheep fed a high-concentrate diet. Methods: Five healthy small-tailed Han ewes with permanent rumen fistula were selected and housed in individual pens. This study adopted a self-controlled and crossover design with a control period and an experimental period. During the control period, the animals were fed a basal diet (with a ratio of concentrate to roughage of 65:35), while during the treatment period, the animals were fed the basal diet supplemented with 0.5% hydroethanolic extract of WGH. Fermentation parameters, digestive enzyme activities, and microbial diversity in rumen fluid were analyzed. Results: Supplementation of hydroethanolic extract of WGH had no significant effect on feed intake, concentrations of total volatile fatty acids, isovalerate, ammonia nitrogen, and microbial protein (p>0.05). However, the ruminal pH, concentrations of acetate, butyrate and isobutyrate, the ratio of acetate to propionate, protozoa count, and the activities of filter paper cellulase and cellobiase were significantly increased (p<0.05), while concentrations of propionate and valerate were significantly decreased (p<0.05). Moreover, 16S rRNA gene sequencing revealed that the relative abundance of rumen bacteria Christensenellaceae R7 group, Saccharofermentans, and Ruminococcaceae NK4A214 group were significantly increased, while Ruminococcus gauvreauii group, Prevotella 7 were significantly decreased (p<0.05). The relative abundance of the fungus Pseudomonas significantly increased, while Basidiomycota, Fusarium, and Alternaria significantly decreased (p<0.05). However, there was no significant change in the community structure of methanogenic archaea. Conclusion: Supplementation of hydroethanolic extract of WGH to a high-concentrate diet improved the ruminal fermentation, altered the structure of ruminal bacterial and fungal communities, and exhibited beneficial effects in alleviating subacute rumen acidosis of sheep.

Effects of Moisture and a Saponin-based Surfactant during Barley Processing on Growth Performance and Carcass Quality of Feedlot Steers and on In vitro Ruminal Fermentation

  • Wang, Y.;Gibb, D.;Greer, D.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1690-1698
    • /
    • 2011
  • Feedlot and in vitro ruminal experiments were conducted to assess the effects of saponin-containing surfactant applied during tempering of barley grain on cattle growth performance and on ruminal fermentation. In the feedlot experiment, treatments with three barley grain/barley silage based diets were prepared using barley grain at 7.7% moisture (dry, D), after tempering to 18% moisture (M), or after tempering with a saponin-based surfactant included at 60 ml/t (MS). Each treatment was rolled at settings determined previously to yield optimally processed barley. A total of 180 newly weaned British${\times}$Charolais steers were fed three diets in 18 pens for a 63-d backgrounding period and 91-d finishing period to determine feed intake, growth rate and feed efficiency. Cattle were slaughtered at the end of the experiment to measure the carcass characteristics. Tempering reduced (p<0.001) volume weight and processing index, but processing characteristics were similar between MS and M. Tempering increased (p<0.05) growth during backgrounding only, compared with D, but did not affect feed intake in either phase. During backgrounding, feed efficiency was improved with tempering, but during finishing and overall this response was only observed with the surfactant. Tempering did not affect carcass weight, fat content or meat yield. Surfactant doubled the proportion of carcasses grading AAA. In the in vitro experiment, barley (500 mg; ground to <1.0 mm or steam-rolled) was incubated in buffered ruminal fluid (40 ml) without or with surfactant up to 20 ${\mu}l/g$ DM substrate for 24 h. Surfactant increased (p<0.05) apparent DM disappearance and starch digestibility but reduced productions of gas and the volatile fatty acid and acetate:propionate ratio, irrespective of barley particle size. Compared with feeding diets prepared with non-tempered barley, tempering with surfactant increased the feed efficiency of feedlot steers. This may have arisen from alteration in processing characteristics of barley grain by surfactant rather than its direct effect on rumen microbial fermentation.

Effect of Mugwort Processing Types on in vivo Digestibility and Ruminal Fermentation Characteristics in Sheep (쑥(Artemisia sp.)의 가공방법이 면양의 소화율과 반추위내 발효특성에 미치는 영향)

  • Kim, J.H.;Ko, Y.D.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.409-418
    • /
    • 2005
  • This study was conducted to examine the nutrient digestibility and ruminal fermentation characteristics in sheep fed dried mugwort and mugwort silage for 5% levels of rice straw in the basal diet, and mugwort pellet for 5% levels of concentrate in the basal diet. For the experiment, they were given a basal diet containing of rice straw and concentrate mixed at a 3: 7 ratio (DM basis). The treatments were designed as a 4 ${\times}$ 4 Latin square design with four sheep (50.2 kg body weight). The digestibility of crude protein was increased (p < 0.05) to 4.6 - 6.2 % in sheep fed mugwort silage treatments (60.23 %) compared with those of control (54.08 %) and dried mugwort treatment (55.67 %). That of ether extract was iicreased (p < 0.05) to 4.8 - 8.8 % in sheep fed mugwort silage treatments (80.22 %) compared with those of control (71.47 %) and dried mugwort treatment (75.46 %). In the dry matter intake, mugwort silage treatment (904.44 g) was the hightest and mugwort pellet treatment, dried mugwort treatment and control were 810.66 g, 780.66 g and 742.18 g, respectively. The ruminal pH in all treatments were rapidly decreased (p < 0.05) at 0.5 and 1 hour after feeding and slowly increased at 2, 4 and 8 hours after feeding, especially mugwort silage treatment. The ammonia nitrogen concentrations were the highest (p < 0.05) in sheep fed mugwort silage treatment (11.24 - 12.05mg / 100 rnz) at 0.5 and 2 hours after feeding. The ruminal concentrations of acetic acid (6.06 mmol /100 $m\ell$) and propionic acid (2.35 mmol/ 100 mz) were an increased (p < 0.05) at the mugwort silage treatments at 1 and 2 hours after feeding. Purine derivatives out put (13.41 mmol / d) and microbial protein production (11.61 mmol / d) were increased (p < 0.05) compared with those of control (5.42 and 4.93 mmol / d).

Effect of Cassoy-urea Pellet as a Protein Source in Concentrate on Ruminal Fementation and Digestibility in Cattle

  • Wanapat, Metha;Promkot, C.;Wanapat, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.1004-1009
    • /
    • 2006
  • Four male crossbred native beef cattle (average body weight of 427.7 kg) were randomly allocated to four types of cassoy-urea pellet as a source of protein in concentrate according to a $4{\times}4$ Latin square design to determine effect of diets on ruminal fermentation and nutrient digestibility. The four types of cassoy-urea pellets contained cassava hay, soybean meal, urea and binding agent at 79.2:19.8:0:1 (27.9% CP dry matter), 78.4:19.6:1:1 (30.4% CP), 77.6:19.4:2:1 (33.0% CP) and 99:0:0:1 (23.8% CP) for dietary treatments; 1, 2, 3 and 4, respectively. All four concentrate mixtures contained similar crude protein levels (11% CP) and were fed to animals in two equal parts (0.5% of body weight per day) while urea-treated rice straw (5% urea) was given ad libitum. The experiment revealed that dietary concentrate treatments had no effect on dry matter intake while digestibilities of neutral-detergent fiber and crude protein were higher (p<0.05) in cattle fed dietary treatments 1, 2 and 3 than in cattle fed dietary treatment 4. Ruminal ammonia-nitrogen ($NH_3$-N), was higher and acetic acid concentration (C2) and ratio of C2 to propionic acid (C3) were lower (p<0.05) in cattle fed dietary treatments 1, 2 and 3 than in those on treatment 4. It is concluded that use of cassoy-urea pellet as a protein source in concentrates for cattle resulted in improvement of digestibility, ruminal fermentation and rumen ecology. Further research using cassoy-urea pellet in feeding trials with milking cows and fattening beef should be undertaken.