• Title/Summary/Keyword: rudder angle

Search Result 166, Processing Time 0.028 seconds

A Study on the Maneuverabilities of the M . S . Pusan 403 by PAL Test and Z Test (PAL 시험과 Z 시험에 의한 부산 403호의 조종성능에 관한 연구)

  • Ryu, Jae-Choon;Kim, Ki-Yun;Kim, Jong-Hwa
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.2
    • /
    • pp.22-30
    • /
    • 1986
  • It is very important for a navigator on bridge to know the maneuverability of his ship sufficiently at sea. Generally, the data of a turning circle test have long been used to study and evaluate the maneuverability of a ship. But referring only the data of the turning circle test method, he can not evaluate his ship's maneuvering characteristics sufficiently. So nowaday the test method added Z test to turning circle test for more detail references is considered to be desirable. In this paper, the authors performed PAL test and Z test together in order to study the maneuverability of M. S.Pusan 403, training ship of the National Fisheries University of Pusan. According to the results of PAL test, the rudder effect in port rudder angle of the M. S. Pusan 403 was found to be more effective than that in starboard one, because her changing amounts of angular velocity, turning radius and tangent speed in port rudder angles were found to be larger than those of them in starboard rudder one in unsymmetry. The relation between her drift angle(.8) and rudder angle (0) was found to be changing with .8=0.640 in direct proportion. As it appeared that her calculated K'-values were smaller than the standard K'-values of different kinds of ships in accordance with her Z test, her turning ability was found to be lower. The running distance of a turn in her 10$^{\circ}$ Z test was about 8.3 times her own length and was found not to be exceeded the standard maneuvering distance, therefore she was considered to have good maneuverabilities synthetically.

  • PDF

A Study on the Prediction of Maneuvering Motion for a Twin-Screw Twin-Rudder Ship at Initial Design Stage (초기설계 단계에서 2축2타선의 조종운동 추정에 관한 연구)

  • 이승건;이경우;이승재
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.1
    • /
    • pp.103-108
    • /
    • 1997
  • Mathematical model of maneuvering motion for a single-screw single-rudder ship is established and several applications to the special situations of maneuvering are attempted. While, the mathematical model for twin-screw twin-rudder ship is not presented so much, because that type of ship is not popular. Lee et al. have examined the characteristics of such ship by captive model tests in 1988, in Japan. This paper proposes new mathematical models for propeller effective wake (1 -${\omega}_p$) and effective neutral rudder angle ${delta}_R$ in the case of twin-screw twin-rudder ship. And some maneuvering motionse are calculated with proposed models and compared with exact simulations.

  • PDF

A Study on the Prediction of Maneuvering Motion for a Twin-Screw Twin-Rudder Ship at Initial Design Stage (초기설계 단계에서 2축2타선의 조종운동 계산에 관한 연구)

  • 이승건;이경우;이승재
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1996.09a
    • /
    • pp.81-88
    • /
    • 1996
  • Mathematical model of maneuvering motion for a single-screw single-rudder ship is established and several applications to the special situations of maneuvering are attempted. While the mathematical model for twin-screw twin-rudder ship is not studied presented so much because that type of ship is not popular. Lee et al. have examined the characteristics of such ship by captive model tests in 1988 in Japan. This paper proposes new mathematical models for propeller effective wake (1-wp) and effective neutral rudder angle $\delta$R in the case of twin-screw twin-rudder ship. And some maneuvering motions are calculated with proposed models and compared with exact simulations.

  • PDF

A study on the turning ability of a DWT 8,000-ton oil/chemical tanker by real sea trials - A comparison between the semi-balanced rudder and the flap rudder - (실선시험에 의한 DWT 8,000톤 선박의 선회성능 - Semi-balanced rudder and flap rudder -)

  • Lee, Hyeong-Geun;An, Young-Su;Park, Byung-Soo;Jang, Choong-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.2
    • /
    • pp.245-256
    • /
    • 2015
  • This study is intended to provide navigator with specific information necessary to assist the avoidance of collision and the operation of ships to evaluate the maneuverability of dead weight tonnage 8,000 tons Oil/Chemical tanker. The actual maneuvering characteristics of ship can be adequately judged from the results of typical ship trials. Author carried out sea trials based full scale for turning test in ballast condition and full load condition, semi balanced rudder and flap rudder. The turning circle maneuvering were performed on the starboard and port sides with $35^{\circ}$ rudder angle at the normal continuous rating. The results from tests could be compared directly with the standards of maneuverability of IMO and consequently the maneuvering qualities of the ship is full satisfied with its.

Flow Visualization and PIV Analysis around a 2-Dimensional Flapped Foil (균일 흐름 중에 놓인 2차원 가변익 주위의 유동가시화 및 PIV 해석)

  • Oh, Kyoung-Gun;Choi, Hee-Jong;Lee, Gyoung-Woo;Choi, Min-Son;Lee, Seung-Keon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2005.05a
    • /
    • pp.62-69
    • /
    • 2005
  • Maneuverability of ships has been receiving a great deal of attention both concerning navigation safety and the prediction of ship maneuvering characteristics, to improve it. High-lift device could be applied to design of rudder at design stage. Now, we carried out the flow visualization and inversitgation of flow around a flap rudder (trailing-edge flap). Flow visualization results of flap defection shown as the flow around a NACA0020 Flap Rudder will be conducted in a Circulating Water Channel. The purpose of this investigation will be to investigate the development of the separation region on the flap rudder with the variation of angle of attack and determine the angle of attack at which the flow separates and reattaches.

  • PDF

A Study on the Pressure Distributions of Horn Rudder Operating in Ship's Wake (선미 후류에서 작동하는 혼타의 압력분포에 관한 연구)

  • Do-Sung Kong;Jae-Moon Han;Jae-Moon Lew
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • Hull-propeller-rudder interactions are studied by the iterative computational procedures. Hull effects on the propeller are reflected through the effective velocities computed by the vortex ring method which used the measured nominal wake as input data. A potential based panel method has been developed to solve the propeller-rudder interactions using the obtained effective velocities. Steady flow characteristics around the rudder surface can be obtained by computing the induced velocities on the rudder by the propeller and vice versa are computed by the iterative manner until the converged solutions are obtained. Flow characteristics around the propeller and the rudder are measured by Laser Doppler Velocimetry(L.D.V.) in large cavitation tunnel at Samsung Heavy industries. The gap flow model is adopted to solve the characteristics of the horn rudder. Numerical results are compared with the experimental values and the computed velocity fields and pressure distributions with rudder angle on the horn rudder surface show good agreement with measured ones in large cavitation tunnel.

Research on the Prediction of Maneuvering Motion for a Twin-Screw Twin-Rudder Ship (2축(軸)2타선(舵船)의 조종운동 추정(推定)에 관한 연구)

  • Lee, Seung Keon;Kim, Yoon Su;Lee, Seung Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.60-65
    • /
    • 1996
  • Mathematical model of maneuvering motion for a single-screw single-rudder ship established and versatile applications to the special situations of maneuvering are attempted. While, the mathematical model for twin-screw twin-rudder ship is not presented so much, because that type of ship is not popular. Lee et al. have examined the characteristics of such ship by captive model tests in 1988. This paper treats new mathematical models for propeller effective wake ($1-w_p$) and effective neutral rudder angle ${\delta}_R$ in the case of twin-screw twin-rudder ship. And some maneuvering motions are calculated with proposed models and compared with exact simulations.

  • PDF

Numerical Calculation and Validation for Rudder Cavitation of a Large Container Ship (초대형 컨테이너선박 방향타의 캐비테이션 수치계산 및 검증)

  • Kim, Gun-Do;Moon, Il-Sung;Kim, Kyoung-Youl;Van, Suk-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.568-577
    • /
    • 2006
  • With the increase of ship size and speed, the loading on the propeller is increasing, which in turn increases the rotational speed in the propeller slipstream. The rudder placed in the propeller slip stream is therefore subject to severe cavitation with the increased angle of attack due to the increased rotational induction speed of the propeller. In the present paper the surface panel method, which has been proved useful in predicting the sheet cavitation on the propeller blade, is applied to solve the cavity boundary value problem on the rudder. The problem is then solved numerically by discretizing the rudder and cavity surface elements of the quadrilateral panels with constant strengths of sources and dipoles. The strengths of the singularities are determined satisfying the boundary conditions on the rudder and cavity surfaces. The extent of the cavity, which is unknown a priori, is determined by iterative procedure. Series of numerical experiments are performed increasing the degree of complexity of the rudder geometry and oncoming flows from the simple hydrofoil case to the real rudder in the circumferentially averaged propeller slipstream. Numerical results are presented with experimental results.

Yaw Angle Command Generation and Adaptive Fuzzy Control for Automatic Route Tracking of Ships (선박자동항로 추적을 위한 회두각 명령의 생성과 적응 퍼지제어)

  • 이병결;김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.199-208
    • /
    • 2001
  • In this paper, an automatic route tracking algorithm using the position variables and the yaw angle of a ship is suggested, Since most autopilot systems paly only a role of course-keeping by integrating the gyrocompass output, they cannot cope with position errors between the desired route and real route of the ship resulted from a drifting and disturbances such as wave, wind and currents during navigation. In order for autopilot systems to track the desired route, a method which can reduce such position errors is required and some algorithms have been proposed[1,2]While such were turned out effective methods, they have a shortage that the rudder control actions for reducing the position errors are occurred very frequently. In order to improve this problem it is necessary to convert that error into the corresponding yaw angle and necessary to treat only yaw angle control problem. To do this a command generation algorithm which converts the rudder angle command reducing the current position error into they yaw angle command is suggested. To control the ship under disturbances and nonlinearities of the ship dynamics, the adaptive fuzzy controller is developed. Finally, through computer simulations for two ship models, the effectiveness of the suggested method and the possibility of the automatic route tracking are assured.

  • PDF

A Study on the Quantative Analysis of a Ship's Collision Avoding Action by Using the Maneuvering Indices (조종성지수에 의한 충돌회피동작의 양적 파악에 관한 연구)

  • 윤점동
    • Journal of the Korean Institute of Navigation
    • /
    • v.1 no.1
    • /
    • pp.27-44
    • /
    • 1977
  • The Maneuvering Indices of a ship are the values that decide the quantity of her motion in turning when her rudder is turned over to an angle to the starboard or the port. They consist of two kinds of indices, one of which is called index K and the other, index T. Index K decides a ship's turning ability and index T does the length of time delay of a normal turning motion after her rudder has finished the turn of an ordered angle. Generally, the values of the indices are calculated through some mathematic formulas with figures of her heading degrees recorded at a fixed time intervals during her Z test. The values of the same kind index of a ship appear differently according to the ship'sspeed, trim, rudder angle and loaded condition, etc. In this paper, the author analyzed all the amthematic formulas required to calculate the values of the indices in their forming process and examined them from the point of mathematics and dynamics and also actually figured out the values of maneuvering indices of the M.S. "HANBADA", the training ship of Korea Merchant Marine College through her Z test. The author supposed a case in which two same typed ships as the "HANBADA" in size, shape and conditions were approaching each other in meeting end on situation and each ship turned her rudder hard over to the starboard respectively when they approached to the distance of 3 times as long as the ship's length. The author worked out mathematic formulas calculating forward and transverse ship's motions within the above mentioned situation for the quantative analysis of the collision avoding action to certify whether they are in collision status or not. Applying the calculated values of the maneuvering indices of the "HANBADA" to the motion calculating formulas, the author found out the two ships were passing over each other with the clearing distance o 39m between their port quarters. With the above mentioned examinations and explanations, the author demonstrated that a ship's motion in any collision avoiding action can be shown with quantities of time and distance within reliable limit.istance within reliable limit.

  • PDF