• Title/Summary/Keyword: rubber pad

Search Result 79, Processing Time 0.025 seconds

Lateral deformation capacity and stability of layer-bonded scrap tire rubber pad isolators under combined compressive and shear loading

  • Mishra, Huma Kanta;Igarashi, Akira
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.479-500
    • /
    • 2013
  • This paper presents the experimental as well as analytical study conducted on layer-bonded scrap tire rubber pad (STRP) isolators to develop low-cost seismic isolators applicable to structures in developing countries. The STRP specimen samples were produced by stacking the STRP layers one on top of another with the application of adhesive. In unbonded application, the STRP bearings were placed between the substructure and superstructure without fastening between the contact surfaces which allows roll-off of the contact supports. The vertical compression and horizontal shear tests were conducted with varying axial loads. These results were used to compute the different mechanical properties of the STRP isolators including vertical stiffness, horizontal effective stiffness, average horizontal stiffness and effective damping ratios. The load-displacement relationships of STRP isolators obtained by experimental and finite element analysis results were found to be in close agreement. The tested STRP samples show energy dissipation capacity considerably greater than the natural rubber bearings. The layer-bonded STRP isolators serve positive incremental force resisting capacity up to the shear strain level of 150%.

Effect of Aging on Adhesive Strength of Rubber-steel Cord Composite and Tire-endurance (고무-스틸 코드 접착력과 타이어 내구력에 미치는 노화의 영향)

  • Lim, Won-Woo
    • Journal of Adhesion and Interface
    • /
    • v.3 no.2
    • /
    • pp.40-44
    • /
    • 2002
  • We invested effect of the keeping-time of uncured composite and thermal aging, of cured composite on adhesive strength for rubber-brass coated steel cord composite in this study. We also evaluated how the adhesive strength affects to tire endurance. Using PAD adhesion specimen, peel adhesive strength was measured. The uncured composite was kept for several days up to 35 days in factory. Cured composite was also kept for 5 and 10 days at $85^{\circ}C$ in dry oven. Peel adhesive strength was decreased with increasing keeping-time and showed lower value with increasing thermal aging time. The lower peel adhesive strength, the lower tire-endurance. This fact was caused by the humidity and thermal aging which affected in the decrease of adhesive strength of the rubber-steel cord composite and resulted in interface fracture between rubber and steel cord. This phenomenon was confirmed from SEM investigation and tire-endurance. It was just known that corrosion of steel cord's surface and aging of adhesive layer strongly affected to decrease of adhesive strength. This resulted in directly decreasing tire-endurance.

  • PDF

Lifetime Prediction of Rubber Pad for High Speed Railway Vehicle (고속철도용 레일패드 노후화 정량화 방안 연구)

  • Woo, Chang-Su;Choe, Byeong-Ik;Park, Hyun-Sung;Yang, Shin-Chu;Jang, Sung-Yep;Kim, Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.739-744
    • /
    • 2009
  • Rail-pad is an important and readily replaceable component of a railway track, as it is the elastic layer between the rail and the sleeper. Characteristics and useful lifetime prediction of rail-pad was very important in design procedure to assure the safety and reliability. In this paper, the degradation of rail pad properties as a function of their in-service life is studied with a view of developing a technique for predicting the optimum period of track maintenance with regard to pad replacement. In order to investigate the useful lifetime, the accelerate test were carried out. Accelerated test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful lifetime prediction for rail-pads were proposed.

Evaluation of Static Spring Constant and Accelerated Life Prediction for Compression Set of Polyurethane Resilient Pad in Rail Fastening System

  • Lee, Seung-Won;Park, Jun-Young;Park, Eun-Young;Ryu, Sung-Hwan;Bae, Seok-Hu;Kim, Nam-Il;Yun, Ju-Ho;Yoon, Jeong-Hwan
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.220-225
    • /
    • 2018
  • Resilient pads play a major role in reducing the impact of loads on a rail in a rail-fastening system, which is essentially used for a concrete track. Although a compression set test is commonly used to measure the durability of a resilient pad, the static spring constant is often observed to be different from the fatigue test. In this study, a modified compression set test method was proposed to monitor the variations in the compression set and static spring constant of a resilient pad with respect to temperature and time. In addition, the life of the resilient pad was predicted by performing an acceleration test based on the Arrhenius equation.

Effect of the Stiffness on the Performance of Impact Noise Isolation Pads of a Floor (바닥충격음 방지재의 재료강성 효과)

  • Lee, Dong-Hoon;Hwang, Yoon;Kang, Moon;Kim, Min-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.425-430
    • /
    • 2000
  • This paper describes the effect of the pad stiffness on the noise reduction of impact noise isolation pads of a floor. And also a new semi-experimental method for measuring the impact noise isolation capability of a pad is introduced. The impact noise isolation pads made of wire-mesh, urethane-chip and foam rubber are used for measuring the stiffness, the vibrational insulation performance and the impact noise isolation capability. The correlation between the stiffness and impact noise isolation capability of pads is theoretically reviewed, and confirmed from the experimental results. For measuring the impact noise isolation capability of only an isolation pad, a semi-experimental method proposed in this study is more effective than the reverberation room method.

  • PDF

Wet adhesion and rubber friction in adhesive pads of insects

  • Federle, Walter
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.31-42
    • /
    • 2004
  • Many animals possess on their legs adhesive pads, which have undergone evolutionary optimization to be able to attach to variable substrates and to control adhesive forces during locomotion. Insect adhesive pads are either relatively smooth or densely covered with specialized adhesive hairs. Theoretical models predict that adhesion can be increased by splitting the contact zone into many microscopic, elastic subunits, which provides a functional explanation for the widespread 'hairy' design. In many hairy and all smooth attachment systems, the adhesive contact is mediated by a thin film of liquid secretion between the cuticle and the substrate. By using interference reflection microscopy (IRM), the thickness and viscosity of the secretion film was estimated in Weaver ants (Oecophylla smaragdina). 'Footprint' droplets deposited on glass are hydrophobic and form low contact angles. IRM of insect pads in contact showed that the adhesive liquid is an emulsion consisting of hydrophilic, volatile droplets dispersed in a persistent, hydrophobic phase. I tested predictions derived from film thickness and viscosity by measuring friction forces of Weaver ants on a smooth substrate. The measured friction forces were much greater than expected assuming a homogenous film between the pad and the surface. The findings indicate that the rubbery pad cuticle directly interacts with the substrate. To achieve intimate contact between the cuticle and the surface, secretion must drain away, which may be facilitated by microfolds on the surface of smooth insect pads. I propose a combined wet adhesion/rubber friction model of insect surface attachment that explains both the presence of a significant static friction component and the velocity-dependence of sliding friction.

  • PDF

Vibration Isolation System of a Large Reverberation Chamber (대형 잔향실의 방진 설계 및 검증)

  • 김영기;김홍배;이동우;우성현;문상무
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1026-1031
    • /
    • 2003
  • A vibration isolation system fur a large reverberation chamber (1,228㎥, 1,000ton) has been installed. The reverberation chamber generates loud noise and induces high level of vibration to perform spacecraft acoustic environmental tests. The isolation system prevents vibration transfer from the chamber to enclosure buildings. This paper describes logical design process and commissioning experiments of the system. Design criteria have been induced from rigid body model of the chamber. Finite element model has been employed to select the characteristics of rubber pads. A total of 21 rubber pads have been installed between the chamber and supporting pedestals. A sand bag of 800kg was dropped on the chamber floor to measure the natural frequency of the isolation system. Absolute transmissibility has been measured while generating 145㏈ in the chamber. The natural frequency of the chamber is 10.5㎐, which is 80% of estimated value. Overall transmissibility at working frequency range (25㎐-10,000㎐) is less than -6㏈.

  • PDF

Prototype of Fall Impact Protective Pants for Elderly Women (노년 여성을 위한 낙상충격 보호팬츠 디자인 프로토타입)

  • Park, Jung Hyun;Lee, Jeong Ran
    • Journal of the Korean Society of Costume
    • /
    • v.66 no.4
    • /
    • pp.45-60
    • /
    • 2016
  • Elderly women have a high risk of falling down in their daily lives. The purpose of this study is to develop protective pants for elderly women, which will mitigate the impact of falls, and play a major role in reducing injuries. The two types of design were proposed for development of protective pants by selecting pad insertion point and inserting lining for keeping pad in place through the checklist to investigate from the interviews with the medical workers and the investigation of the user requirement. Design A has protective pads in the hip, hip joint, and knee, while design B has protective pads in the hip and hip joint area. For the impact absorbing material, CR (chloroprene rubber) foam was selected for its flexibility, lightness, and impact absorbing capacity, and its pad shapes were designed to produce much flexibility in consideration of the activity and human body fitness of the wearers. Three kinds of pad types, which are the cut type, the porous type, and the honeycomb type, were proposed, and were manufactured to fit into the protective parts according to their design types.

Comparative Study on Compressive Strength of Concrete with New Sand-Cap and Neoprene Pad

  • Park, Young-Shik;Suh, Jin-Kook
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2008
  • The most typical capping method for concrete structures is a sulfur-mortar compound capping, provided it satisfied the standard criterion set forth by ASTM C 617, but this conventional bonded-type method has many problems. It exhibits relatively the smaller unreliable value of the strength of high-strength concrete due to the differences of elasticity and strength between the cylinder and the cap, and manifests poor serviceability such as dangerous working tasks or a waste of the working time. To prevent these problems, unbonded-type capping methods have taken the place of the conventional methods in recent years. One of the popular methods is the use of synthetic rubber like a neoprene pad. Serious problems still remain in this method, which include the consideration of its chemical characteristics in consideration of the selection, the safekeeping and the economy of the pads. Moreover, the synthetic rubber pads cannot be used in concrete cylinder with strength greater than 80 MPa according to ASTM C 1231-00. New 'sand-capping method' presented in this study, can be applicable to the compressive strength evaluation of the high strength concrete in the range of $70{\sim}100\;MPa$. This new method has better simplicity and reliability than those of existing 'sand-box', because usual materials such as standard sand and simply-devised apparatus are used for the capping system. The statistical analysis of the test results revealed that the new sand-capping method exhibited the smallest deviation and dispersion, attesting for its much better reliability than other methods specified in ASTM C 1231/1231M.

Evaluation of Adhesiveness with Current Flow Time in the Indirect Heating of an Asphalt Pad using Joule Heating (줄 히팅을 이용한 아스팔트패드 간접가열에 있어서 통전시간별 융착성 평가)

  • Bae, Ki-Man;Choi, Han-Suk;Oh, Bo-Ra-Mi;Baek, Jong-Jin;Park, Seong-Hwan;Kang, Myungchang;Lee, Jae-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.104-109
    • /
    • 2020
  • Recently, vibration and noise have become an important issue in the auto industry. Asphalt vibration damping pads are used to reduce the noise and vibration of automobile bodies, and asphalt is used for many mass-produced parts due to its simple attachment process and low processing costs. In this study, the self-adhesion of asphalt pads using Joule heating was evaluated. To create the asphalt pad for the experiment, the asphalt pad was molded into a specific thickness by using SGACC material and rubber used in the vehicle body as a main component and a modified resin and filler. The SGACC material was 200 mm in length, 200 mm in width, and 0.7 mm in thickness. The asphalt pad was 200 mm in length, 100 mm in width, and 3 mm in thickness. The equipment was composed of a TR (Transformer) DC254kVA and a TC (Time controller) for a current of up to 20,000 A. The current for the Joule heating was set to 7.0 kA and a 3/1 cycle, for which the adhesion of the asphalt pad over the current flow time was evaluated.