• Title/Summary/Keyword: rubber loading

Search Result 167, Processing Time 0.023 seconds

Statistical Analysis of Main Factors With Affecting the Physical Properties of Rubber Compounds (고무조성물의 물리적 성질에 영향을 미치는 주요인자에 대한 통계학적 해석)

  • Lee, Seag;Park, Nam-Cook
    • Elastomers and Composites
    • /
    • v.32 no.1
    • /
    • pp.20-28
    • /
    • 1997
  • This study have Investigated the effect of various factors related to the physical properties of vulcanizated rubber compounds. rubber type, carbon black type and carbon black loading were selected as main factors and evaluation were tested by tables of orthogonal arrays with 3 factors and 3 levels. rubber types have affected cure time, tensile strength, and $T_g$ as main factor and carbon black loading have affected viscosity, scorch time, maximum torque, hardness, 300% modulus, rebound, heat build-up, $0\;&\;60^{\circ}C$ tangent delta, PICO and CUT/CHIP loss as main factor but the effects of carbon black type have affected only bound rubber content.

  • PDF

Application of waste rubber to reduce the settlement of road embankment

  • Tafreshi, S.N. Moghaddas;Norouzi, A.H.
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.219-241
    • /
    • 2015
  • In this paper, a series of repeated load tests were carried out on a 150 mm diameter plate simulative of vehicle passes, to demonstrate the benefits of soil-rubber shred mixture in decreasing the soil surface settlement of road embankment. The results show that the efficiency of rubber reinforcement is significantly a function of the rubber content, thickness of rubber-soil mixture and soil cap thickness over the mixture. Minimum surface settlement is provided by 2.5% of rubber in rubber-soil mixture, the thickness of mixture layer and soil cap of 0.5 times the loading surface diameter, giving values of 0.32-0.68 times those obtained in the unreinforced system for low and high values of amplitude of repeated load. In this installation, in contrast with unreinforced bed that shows unstable response, the rate of enhancement in settlement decreases significantly as the number of loading cycles increase and system behaves resiliently without undergoing plastic deformation. The findings encourage the use of rubber shreds obtained from non-reusable tires as a viable material in road works.

Effects of Carbon Black Content and Vulcanization Type on Cure Characteristics and Dynamic Mechanical Property of Styrene-Butadiene Rubber Compound

  • Changwoon Nah;Kim, Wan-Doo;Lee, Seag
    • Macromolecular Research
    • /
    • v.9 no.3
    • /
    • pp.157-163
    • /
    • 2001
  • The influences of carbon black loading and cure type on the cure characteristics including kinetics and dynamic mechanical properties were investigated for a styrene-butadiene rubber (SBR). The rate constants of accelerated sulfur vulcanization reaction at three different temperatures were determined using a cure rheometer, and they were compared with those from the direct measurement of sulfur concentration. The strain softening behavior under dynamic deformation, known as the Payne effect was also discussed depending on the carbon black loading and cure type.

  • PDF

Dynamic deformation behavior of rubber under high strain rate compressive loading (플라스틱 SHPB를 사용한 고무의 고변형률 하중하에서의 동적변형 거동)

  • 이억섭;김경준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.849-853
    • /
    • 2002
  • A specific experimental method, the split Hopkinson pressure bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 103/s~104/s. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from varying structures under dynamic loading are determined using a Split Hopkinson Pressure Bar technique.

  • PDF

Numerical Life Prediction Method for Fatigue Failure of Rubber-Like Material Under Repeated Loading Condition

  • Kim Ho;Kim Heon-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.473-481
    • /
    • 2006
  • Predicting fatigue life by numerical methods was almost impossible in the field of rubber materials. One of the reasons is that there is not obvious fracture criteria caused by nonstandardization of material and excessively various way of mixing process. But, tearing energy as fracture factor can be applied to a rubber-like material regardless of different types of fillers, relative to other fracture factors and the crack growth process of rubber could be considered as the whole fatigue failure process by the existence of potential defects in industrial rubber components. This characteristic of fatigue failure could make it possible to predict the fatigue life of rubber components in theoretical way. FESEM photographs of the surface of industrial rubber components were analyzed for verifying the existence and distribution of potential defects. For the prediction of fatigue life, theoretical way of evaluating tearing energy for the general shape of test-piece was proposed. Also, algebraic expression for the prediction of fatigue life was derived from the rough cut growth rate equation and verified by comparing with experimental fatigue lives of dumbbell fatigue specimen in various loading condition.

Full-scale tests and analytical model of the Teflon-based lead rubber isolation bearings

  • Wang, Lu;Oua, Jin;Liu, Weiqing;Wang, Shuguang
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.809-822
    • /
    • 2013
  • Base isolation is widely used in seismic resisting buildings due to its low construction cost, high reliability, mature theory and convenient usage. However, it is difficult to design the isolation layer in high-rise buildings using the available bearings because high-rise buildings are characterized with long period, low horizontal stiffness, and complex re-distribution of the internal forces under earthquake loads etc. In this paper, a simple and innovative isolation bearing, named Teflon-based lead rubber isolation bearing, is developed to address the mentioned problems. The Teflon-based lead rubber isolation bearing consists of friction material and lead rubber isolation bearing. Hence, it integrates advantages of friction bearings and lead rubber isolation bearings so that improves the stability of base isolation system. An experimental study was conducted to validate the effectiveness of this new bearing. The effects of vertical loading, displacement amplitude and loading frequency on the force-displacement relationship and energy dissipation capacity of the Teflon-based lead rubber isolation bearing were studied. An analytical model was also proposed to predict the force-displacement relationship of the new bearing. Comparison of analytical and experimental results showed that the analytical model can accurately predict the force-displacement relationship and elastic shear deflection of the Teflon-based lead rubber isolation bearings.

Dynamic Property Evaluation of Lead Rubber Bearing by Shear Loading (적층고무베어링의 동적 특성평가)

  • 이경진;김갑순;강태경;서용표;이종림
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.367-372
    • /
    • 2002
  • In these days, The base isolation system is often used to improve the seismic capacity of the structures instead of conventional techniques of strengthening the structural members. The purpose of this study is to evaluate dynamic properties and mechanical characteristics of the 10tonf-LRB(Lead-Rubber Bearing). Experimental studies were performed to obtain the hysteretic behavior, effective shear stiffness( $K_{eff}$), equivalent damping( $H_{eq}$ ), capacity of energy dissipation( $W_{D}$) of six 10tonf-LRB. Especially, in this study, the response of the LRB for high loading frequency(0.5Hz~3.0Hz) was estimated. The effective shear stiffness of the LRB decreases and the capacity of energy dissipation increases as the shear strain amplitude increases. But the shear behavior of the LRB is not affected sensitively by loading frequency.y.y.

  • PDF

Dynamic Deformation Behavior of Rubber and Ethylene Copolymer Under High Strain Rate Compressive Loading (SHPB기법을 사용한 고무와 합성수지의 고변형률 속도 하중 하에서의 동적 변형 거동)

  • 이억섭;이종원;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.122-130
    • /
    • 2004
  • It is well known that a specific experimental method, the Split Hopkinson Pressure Bar (SHPB) technique is a best experimental technique to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 10$^3$/s∼10$^4$/s. This type of experimental procedure has been widely used with proper modification on the test setups to determine the varying dynamic response of materials for the dynamic boundary conditions such as tensile and fracture as well. In this paper, dynamic compressive deformation behaviors of a rubber and an Ethylene Copolymer materials widely used for the isolation of vibration from varying structures under dynamic loading are estimated using a Split Hopkinson Pressure Bar technique.

Evaluation for Fatigue Life of Rubber Isolator for Vibration Characteristic on Automotive Cooling Module (진동 특성을 고려한 자동차 냉각모듈 방진고무의 내구성 평가)

  • Shim, Hee-Jin;Kim, Han-Chul;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.350-355
    • /
    • 2008
  • A Rubber mount is widely used for mechanical parts or engineering materials. Especially, it plays an important role in reducing mechanical vibration due to cyclic loading. But, rubber mount is damaged due to the cyclic loading and resonance. Therefore, it is necessary to investigate evaluation of fatigue life considering vibration characteristics for rubber. In this study, a vibration fatigue analysis was performed and based on Power Spectral Density(PSD) and the stress-life curve and a result of frequency response analysis in the finite element method. The measured load history in experiment was transformed to PSD curve. The stress-life curve was obtained by nonlinear static analysis and fatigue test. In addition, frequency response analysis was conducted for mechanical part. In order to evaluate fatigue life of rubber mount, vibration fatigue test was conducted at the constant acceleration-level as well. Fatigue life was determined when the load capacity is reduced to 60% of its initial value. As a result, predicted fatigue life of rubber mount agreed fairly well with the experimental fatigue life.

  • PDF

Acoustic Emission during Crack Propagation Process of Rubber-Modified Epoxy Resin (고무변성 에폭시 수지의 균열진전과정과 음향방출 특성)

  • 이덕보;김현수;최낙삼;남기우;문창권
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.44-50
    • /
    • 2003
  • The damage zone around a crack tip occurring before the fracture is a significant domain. which affects the toughening mechanism of materials. In this study. the growth process of damage zone in the vicinity of crack tip for rubber-modified epoxy resin is investigated using an acoustic emission(AE) analysis. The weight fractions of rubber(CTBN 1300$\times$B) in rubber-modified epoxy resin are 5 wt% and 15 wt%. The fracture toughness($K_{IC}$) and the fracture energy($G_{IC}$) were measured using 3 point bending single-edge notched specimens. The damage zone and rubber particles distributed around the crack tip were observed by a polarized optical microscope and an atomic force microscope(AFM). The damage zone around crack tip of rubber-modified epoxy resin was formed at 13 % loading and developed until 57 % loading of the fracture load. The crack initiated at 57 % loading grew repeatedly in the stick-slip propagation behavior. Based on time-frequency analysis, it was confirmed that AE signals with frequency bands of 0.15~0.20 MHz and 0.20~0.30 MHz were generated from cavitation and stable/unstable cracking inside the damage zone.