• 제목/요약/키워드: rubber isolator

검색결과 97건 처리시간 0.033초

원전 적용을 위한 면진장치의 성능기반 설계 변위 추정 (Estimation of the Isolator Displacement for the Performance Based Design of Nuclear Power Plants)

  • 김정한;최인길;김민규
    • 한국지진공학회논문집
    • /
    • 제18권6호
    • /
    • pp.291-299
    • /
    • 2014
  • There has been an increasing demand for introducing a base isolation system to secure the seismic safety of a nuclear power plant. However, the design criteria and the safety assessment methodology of a base isolated nuclear facility are still being developed. A performance based design concept for the base isolation system needs to be added to the general seismic design procedures. For the base isolation system, the displacement responses of isolators excited by the extended design basis earthquake are important as well as the design displacement. The possible displacement response by the extended design basis earthquake should be limited less than the failure displacement of the isolator. The failure of isolators were investigated by an experimental test to define the ultimate strain level of rubber bearings. The uncertainty analysis, considering the variations of the mechanical properties of isolators and input ground motions, was performed to estimate the probabilistic distribution of the isolator displacement. The relationship of the displacement response by each ground motion level was compared in view of a period elongation and a reduction of damping. Finally, several examples of isolator parameters are calculated and the considerations for an acceptable isolation design is discussed.

Effectiveness of seismic isolation in a reinforced concrete structure with soft story

  • Hakan Ozturk;Esengul Cavdar;Gokhan Ozdemir
    • Structural Engineering and Mechanics
    • /
    • 제87권5호
    • /
    • pp.405-418
    • /
    • 2023
  • This study focused on the effectiveness of seismic isolation technique in case of a reinforced concrete structure with soft story defined as the stiffness irregularity between adjacent stories. In this context, a seismically isolated 3-story reinforced concrete structure was analyzed by gradually increasing the first story height (3.0, 4.5, and 6.0 m). The seismic isolation system of the structure is assumed to be composed of lead rubber bearings (LRB). In the analyses, isolators were modeled by both deteriorating (temperature-dependent analyses) and non-deteriorating (bounding analyses) hysteretic representations. The deterioration in strength of isolator is due to temperature rise in the lead core during cyclic motion. The ground motion pairs used in bi-directional nonlinear dynamic analyses were selected and scaled according to codified procedures. In the analyses, different isolation periods (Tiso) and characteristic strength to weight ratios (Q/W) were considered in order to determine the sensitivity of structural response to the isolator properties. Response quantities under consideration are floor accelerations, and interstory drift ratios. Analyses results are compared for both hysteretic representations of LRBs. Results are also used to assess the significance of the ratio between the horizontal stiffnesses of soft story and isolation system. It is revealed that seismic isolation is a viable method to reduce structural damage in structures with soft story.

고감쇠 면진베어링에 의해 지지된 면진구조물의 지진응답해석 (Seismic Response Analysis of a Base-Isolated Structure Supported on High Damping Rubber Bearings)

  • 유봉;이재한;구경회
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.99-106
    • /
    • 1995
  • The seismic responses of a base Isolated Pressurized Water Reactor(PWR) are investigated using a mathematical model which expresses the superstructure as a linear lumped mass-spring and the seismic Isolator as an equivalent spring-damper. Time history analyses are performed for the 1940 El Centre earthquake with linear amplification. In the analysis 5% of structural damping is used for the superstructure. The effects of high damping rubber bearing on seismic response of the superstructure in base isolated system are evaluated for four stiffness model types. The acceleration responses in base isolated PWR superstructure with high damping rubber bearings are much smaller than those in fixed base structure. In the higher strain region where stiffness behaves non-linearly, the acceleration responses modelled by one equivalent stiffness are smaller than those in nonlinear spring model, and the higher stiffness spring model of isolator exhibits larger peak acceleration response at superstructure in the frequency range above 2.0 Hz. when subjected to linearly amplified 1940 El Centre earthquake.

  • PDF

Analysis of fiber-reinforced elastomeric isolators under pure "warping"

  • Pinarbasi, Seval;Mengi, Yalcin
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.31-47
    • /
    • 2017
  • As a relatively new type of multi-layered rubber-based seismic isolators, fiber-reinforced elastomeric isolators (FREIs) are composed of several thin rubber layers reinforced with flexible fiber sheets. Limited analytical studies in literature have pointed out that "warping" (distortion) of reinforcing sheets has significant influence on buckling behavior of FREIs. However, none of these studies, to the best knowledge of authors, has investigated their warping behavior, thoroughly. This study aims to investigate, in detail, the warping behavior of strip-shaped FREIs by deriving advanced analytical solutions without utilizing the commonly used "pressure", incompressibility, inextensibility and the "linear axial displacement variation through the thickness" assumptions. Studies show that the warping behavior of FREIs mainly depends on the (i) aspect ratio (shape factor) of the interior elastomer layers, (ii) Poisson's ratio of the elastomer and (iii) extensibility of the fiber sheets. The basic assumptions of the "pressure" method as well as the commonly used incompressibility assumption are valid only for isolators with relatively large shape factors, strictly incompressible elastomeric material and nearly inextensible fiber reinforcement.

복합면진장치를 적용한 무정전전원장치의 1축 진동대실험 기반 동적특성 분석 (Dynamic Characteristic of the Seismic Performance of Uninterruptible Power Supply with Combined Isolator Using Shaking Table Test)

  • 이지언;이승재;박원일;최경규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권1호
    • /
    • pp.19-28
    • /
    • 2022
  • 본 연구에서는 전력·통신 설비로 분류되는 무정전전원장치의 내진성능을 향상하기 위하여 고감쇠고무와 와이어 면진장치를 결합한 3가지 유형의 복합면진장치를 개발하였다. 복합면진장치를 적용한 UPS의 동적 특성을 분석하기 위하여 단축 진동대 실험을 수행하였다. 진동대 실험은 국외 진동대 실험 기준인 ICC-ES AC156을 따라 수행하였으며 기준에서 제시하고 있는 요구응답스텍트럼을 기반으로 입력 지진파를 생성하였다. 입력 지진파의 스케일을 50%에서 200%까지 증가시키며 가진하였다. 진동대 실험을 바탕으로 UPS의 손상양상 및 고유진동수, 감쇠비. 동증폭계수, 상대변위 등 동적특성을 비교 및 분석하였다. 3가지 유형의 복합면지장치를 적용함에 따라 UPS의 내진성능이 향상되었으며 이를 통해 개발 면진장치의 성능을 검증하였다.

적층고무받침을 사용한 철근콘크리트 교각의 내진성능평가 (Seismie Performance Evaluation of Reinforced Concrete Bridge Piers Supported by Laminated Rubber Bearings)

  • 김태훈;최정호;신현목
    • 한국지진공학회논문집
    • /
    • 제8권2호
    • /
    • pp.63-72
    • /
    • 2004
  • 이 연구는 적층고무받침을 사용한 철근콘크리트 교각의 내진 성능평가를 하는데 그 목적이 있다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 이에 대한 콘크리트의 균열모델로서는 분산균열모델을 사용하였으며 적층고무받침의 거동을 예측하기 위해서 지진격리요소를 개발하였다. 이 연구에서는 적층고무받침을 사용한 철근 콘크리트 교각의 내진 성능평가를 위해 제안한 해석기법을 신뢰성 있는 연구자의 실험결과와 비교하여 그 타당성을 검증하였다.

소형 인공위성 발사체 충격저감용 PTFE(테프론) 소재 아이솔레이터 연구 (The study of PTFE isolator equipped to small satellite launch vehicle to reduce the separation shock)

  • 정호경;윤세현;서상현;장영순;이영무
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.358-362
    • /
    • 2006
  • Pyro-shock generally refers to the severe mechanical transients caused by the detonation of an ordnance device on a structure. Such device on a structure, including linear explosive, and point explosive are widely used to accomplish in-flight separation of structural elements on aerospace vehicle. And they are a significant cause of launch vehicle failures. The launch vehicle being developed in Korea also uses the explosive for separation events. In this paper, the isolator equipped to small satellite launch vehicle made of PTFE(Teflon) is developed to reduce the separation shock. The test to measure dynamic stiffness of PTFE isolator is performed. This test enables us to find the frequency range of PTFE isolator. And,, pyre-shock test using explosive to evaluate the performance of PTFE isolator is executed. from this study, the isolator conformed to frequency range and load requirement is developed using PTFE instead of rubber.

  • PDF

Demand response modification factor for the investigation of inelastic response of base isolated structures

  • Cheraghi, Rashid Eddin;Izadifarda, Ramezan Ali
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.23-48
    • /
    • 2013
  • In this study, the effect of flexibility of superstructures and nonlinear characteristics of LRB (Lead Rubber Bearing) isolator on inelastic response of base isolated structures is investigated. To demonstrate the intensity of damage in superstructures, demand response modification factor without the consideration of damping reduction factor, demand RI, is used and the N2 method is applied to compute this factor. To evaluate the influence of superstructure flexibility on inelastic response of base isolated structures, different steel intermediate moment resisting frames with different heights have been investigated. In lead rubber bearing, the rubber provides flexibility and the lead is the source of damping; variations of aforementioned characteristics are also investigated on inelastic response of superstructures. It is observed that an increase in height of superstructure leads to higher value of demand RI till 4-story frame but afterward this factor remains constant; in other words, an increase in height until 4-story frame causes more damage in the superstructure but after that superstructure's damage is equal to the 4-story frame's. The results demonstrate that the low value of second stiffness (rubber stiffness in LRBs) tends to show a significant decrease in demand RI. Increase in value of characteristic strength (yield strength of the lead in LRBs) leads to decrease in the demand RI.

교량의 마찰형 지진격리장치 최적 인자 결정에 관한 연구 (A Study on Optimal Design Factors of Frictional bearing for Isolated Bridges)

  • 고현무;박관순;김동석;송현섭
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.451-458
    • /
    • 2002
  • To secure structures from strong earthquakes occurred recently and design economically seismic isolation design is spread rapidly. Specially, frictional isolator has superiority in application to bridge because it has many advantages. however, because isolator lies between pier and girder, responses of pier and superstructure contradict each other and we need to control the two responses to minimize the bridge's failure probability. In this study, frictional coefficient and horizontal stiffness is defined as design parameters of frictional isolator. the optimal design parameters of frictional isolator to minimize the bridge's failure probability are presented according to strength of earthquake and soil conditions. The result says that optimal friction coefficient is higher as the strength of earthquake is increased. And it is also higher as the soils are more flexible. But, optimal horizontal stiffness of rubber spring is insensitive to strength of earthquake and soil condition.

  • PDF