• 제목/요약/키워드: rubber friction coefficient

검색결과 72건 처리시간 0.022초

마찰계수를 고려한 자동차용 에어컨 호스의 체결력에 관한 연구 (A Study on the Clamping Force of an Automotive Air-conditioning Hose according to the Friction Coefficient)

  • 백재권;김병탁
    • 한국기계가공학회지
    • /
    • 제10권3호
    • /
    • pp.39-46
    • /
    • 2011
  • The automotive air conditioning hose is used for connecting the components of air conditioner in a vehicle. The hose is usually manufactured by the swaging process to connect the rubber hose with the metal fitting at the end of the hose. In case that the clamping force is small, the refrigerant gas in the hose can leak locally under the severe operating circumstances. The practical test of clamping force is performed by means of the measurement of separation force. In this study, the swaging process of a hose is simulated with the finite element method, to investigate the effect of friction coefficient on the clamping force. The contact condition is used in consideration of real manufacturing process, and the material properties for the Mooney-Rivlin model is obtained by the experimental results. The result interpretations are focused on the contact forces, which is displayed graphically with respect to friction coefficient, on the surfaces between the hose and the metal fittings.

도시철도차량의 가변편성을 고려한 고무완충기의 임계속도 평가 (An Evaluation of Critical Speed for Draft Gear using Variable Formation EMU)

  • 조정길;김용욱;한재현;최정균;서경수;구정서
    • 한국안전학회지
    • /
    • 제34권5호
    • /
    • pp.139-143
    • /
    • 2019
  • In this study, we tried to derive the most severe scenario and its critical speed by 1-D collision simulation with a variable formation vehicle in order to prepare for the change of demand in Seoul Metropolitan Subway Line 3, which is operated by fixed arrangement. After establishing various collision scenario conditions, the friction coefficient between the wheel and the rail was evaluated as 0.3, which is considered to be severe. As a result of analysis according to all scenarios, the most severe scenario conditions were confirmed by comparing rubber shock absorber performance and vehicle collision deceleration. In addition, a typical wheel-rail friction coefficient was derived through accident cases, and the analysis was performed again and compared. Finally, the criterion of the critical speed in the condition of the friction coefficient of the normal wheel - rail condition was confirmed.

Synthesis and Tribological Behavior of Nanocomposite Polymer Layers

  • Tsukruk, V.V.;Ahn, Hyo-Sok;Julthongpiput, D.;Kim, Doo-In
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.51-52
    • /
    • 2002
  • We report results on microtribological studies of chemically grafted nanoscale polymer layers of different architecture with thickness below 30 nm. We have fabricated the molecular lubrication coatings from elastomeric tri-block copolymers and tested two different designs of corresponding nanocomposite coatings. We observed a significant reduction of friction forces and an increase of the wear stability when a minute amount of oil was trapped within the grafted polymer layer. These polymer gel layers exhibited a very steady friction response and a small value of the coefficient of friction as compared to the initial polymer coating. A polymer 'triplex' coating has been formed by a multiple grafting technique. The unique design of this layer Includes a hard-soft-hard architecture with a compliant rubber interlayer mediating localized stresses transferred through the topmost hard layer. This architecture provides a non-linear mechanical response under a normal compression stress and allows additional dissipation of mechanical energy via the elastic rubber interlayer.

  • PDF

질소이온주입에 의한 알루미늄의 표면개질특성 (Surface Modification of Aluminum by Nitrogen ion Implantation)

  • 강혁진;안성훈;이재상;이재형;김경균
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.124-130
    • /
    • 2005
  • The research on surface modification technology has been advanced to improve the properties of engineering materials. ion implantation is a novel surface modification technology to enhance the mechanical, chemical and electrical properties of substrate's surface using accelerated ions. In this research, nitrogen ions were implanted into aluminum substrates which would be used for mold of rubber materials. The composition of nitrogen ion implanted aluminum alloy and nitrogen ion distribution profile were analyzed by Auger Electron Spectroscopy (AES). To analyze the modified surface, properties such as hardness, friction coefficient, wear resistance, contact angle, and surface roughness were measured. Hardness of ion implanted specimens was higher than that of untreated specimens. Friction coefficient was reduced, and wear resistance was improved. From the experimental results, it can be expected that ion implantation of nitrogen enhances the surface properties of aluminum mold.

칼날형 마모시험기를 이용한 C/B충전 NR 배합고무의 마모거동 (Wear Behavior of C/B filled NR Compounds using a Blade-type Abrader)

  • 윤재훈;강신영
    • Elastomers and Composites
    • /
    • 제49권1호
    • /
    • pp.73-81
    • /
    • 2014
  • 칼날형 마모 마찰 시험기를 이용하여 NR배합고무의 마모 거동을 조사하였다. 온도, 하중, 그리고 회전속도를 변화시켜 마모속도에 미치는 영향과 열화된 배합고무의 마모 현상에 대해 평가하였다. 시편의 회전속도와 수직 하중이 증가할수록 마모속도가 증가하였다. 실험온도가 증가할수록 마찰계수가 감소하였고, 마모속도도 감소하였다. 마찰에너지와 마모속도 사이에 Power-Law 관계를 나타냈으며 마모속도는 열화에 의해 급격히 증가하였다. 시편의 마모패턴은 마모조건에 의해 영향을 받았으며 특히 수직 하중을 변화시켰을 때 마모융기(ridge)간격에 큰 변화를 보였다. 배합고무의 마모속도를 결정하는데 간헐적 마모손실 무게측정 대신 칼날형 마모시험기를 이용한 연속적인 마모이동거리측정으로 대체할 수 있음을 확인하였다.

마찰지진격리장치와 구조물의 응답제어: 강체질량모델에서의 적용 (Response Control of Structure by Frictional Base Isolation System : Rigid-Mass Model)

  • 김재관;이원주;김영중;김병현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.426-431
    • /
    • 2001
  • Seismic performance of base isolated rigid-mass model were studied through shaking table tests. Friction pendulum systems (FPS), pure-friction systems with laminated rubber bearing (LRB) were selected for the comparison of performance. Performance of specially designed isolation systems were tested statically using actuator and dynamically using shaking table. Numerical methods were developed to simulate the nonlinear behavior of the frictional base isolation systems. Two models were considered. one is modified Bouc-Wen model considering breakaway coefficient of friction and the other is classical Coulomb model. The results of numerical methods are found to be in very good agreement with test results.

  • PDF

마찰진자형 면진받침의 설계 및 해석절차 보완에 관한 연구 (A Study on Complement of the Design and Analysis Procedures of Friction Pendulum System)

  • 김현욱;주광호;노상훈;송종걸
    • 한국산학기술학회논문지
    • /
    • 제15권1호
    • /
    • pp.488-494
    • /
    • 2014
  • 마찰진자형 면진받침은 마찰면의 곡률반경과 중력에 의해 생성되는 고유 복원력과 마찰에 의한 감쇠력을 갖는다는 장점이 있지만, 마찰계수의 속도, 상재압 및 온도 등에 대한 의존성으로 거동에 대한 예측이 쉽지 않다. 본 연구에서는 각 기준에서 제시된 마찰진자형 받침의 설계 및 해석절차를 분석하여 추가적인 검토가 필요한 사항들에 대해 평가해 보았으며, 추가로 동일한 동특성을 갖는 납-고무 면진받침 시스템을 이용한 해석결과와 마찰진자형 면진받침 시스템의 해석결과를 비교하여 마찰진자형 면진받침이 갖는 상대적인 거동 특성을 비교 분석해 보았다.

Performances of Plastic Pulley with High Mechanical Properties and Low Friction

  • Kim, Namil;Lee, Jung-Seok;Hwang, Byung-Kook;Bae, Seokhu;Yoon, Jeong-Hwan;Yun, Juho
    • Elastomers and Composites
    • /
    • 제54권2호
    • /
    • pp.135-141
    • /
    • 2019
  • Polyphenylene sulfide (PPS) was filled with glass fiber (GF), aramid fiber (AF), and solid lubricants to improve the mechanical properties and wear resistance. The addition of GF effectively enhanced the tensile strength, flexural modulus, and impact strength of PPS, while solid lubricants such as polytetrafluoroethylene (PTFE), molybdenum disulfide ($MoS_2$), and tungsten disulfide ($WS_2$) lowered the friction coefficients of the composites to below 0.3. The ball nut and motor pulley of the electric power steering (EPS) were manufactured using the PPS composites, and feasibility was ascertained thereafter by conducting the durability test. The composites filled with GF and AF showed high mechanical strength, but slip occurred at the interface between the pulley and belt while testing above $50^{\circ}C$. When small amounts of lubricants were added, the slip was no longer detected because of the suppression of friction heat. It is realized that the low friction as well as high mechanical properties is important to ensure the reliability of plastic pulleys.

습윤 접지력 향상을 위한 안전화 겉창 개발 연구 (The Development of Outsole for Wet Traction Enhancement)

  • 김정수
    • 한국안전학회지
    • /
    • 제28권3호
    • /
    • pp.33-38
    • /
    • 2013
  • Many occupational workers or professionals have to walk on the various floors for a long period of time. The objective of this study was to develop the safety shoes with increased traction through the material selection. In order to fulfill our objective, first, two kinds of filler were selected to compare the wear mechanism at outsole surface. The developed rubber materials were tested with two kinds of portable slip meters. The sample safety shoes with developed rubber materials were also tested with subject in the laboratory. During walking, the safety shoes were naturally abraded with counter surface. The coefficient of friction(COF) was gradually decreased with number of steps to 30,000, while the COF was abruptly increased from 30,000 to 40,000. The experimental results showed that COF tested with silica rubber was at least 10% higher than that with carbon black rubber in wet or detergent condition. It has been well recognized that filler properties play a important role in wet traction in the tire industry. However it has been unclear that filler properties would be decisive factor in safety shoes. Our study shows that silica exhibits a higher slip resistance than carbon black without reference to wear states in wet or detergent condition. So, this results will provide guides for outsole compounders to develop new products and improve product performance.

Dipping법에 의한 천연고무와 그라프트 라텍스 블렌드 필름의 표면특성 (The Surface Properties of Blend Film of Natural Rubber and Graft Latex by Dipping Process)

  • 김공수;박준하;엄주송
    • 공업화학
    • /
    • 제5권6호
    • /
    • pp.990-997
    • /
    • 1994
  • 천연고무 라텍스(NRL)와 메틸메타 크릴레이트가 그라프트된 라텍스(MGL)를 각종 첨가제와 혼합하여 dipping공정으로 가황된 NR 및 블렌드 필름을 제조하였다. NR 필름 제조의 최적조건을 규명하기 위하여 숙성시간에 따른 팽윤도, 인장강도 및 $110^{\circ}C$에서 가황시간의 변화에 따른 기계적 특성을 비교하였다. 필름 표면의 구조 및 미끄럼성을 조사하기 위하여 접촉각 및 정 동마찰계수를 측정한 결과, 접촉각은 MGL의 블렌드 비율이 증가할수록 감소하였고, 정 및 동마찰계수는 NR 필름에 비하여 NR/MG과 NR-d-MG 필름이 현저히 감소하여 표면 미끄럼성이 향상됨을 알 수 있었다.

  • PDF