• Title/Summary/Keyword: rubber air tube

Search Result 15, Processing Time 0.024 seconds

Variations of Air Temperature, Relative Humidity and Pressure in a Low Pressure Chamber for Plant Growth (식물생장용 저압챔버 내의 기온, 상대습도 및 압력의 변화)

  • Park, Jong-Hyun;Kim, Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.200-207
    • /
    • 2009
  • This study was conducted to analyze the variations of air temperature, relative humidity and pressure in a low pressure chamber for plant growth. The low pressure chamber was composed of an acrylic cylinder, a stainless plate, a mass flow controller, an elastomer pressure controller, a read-out-box, a vacuum pump, and sensors of air temperature, relative humidity, and pressure. The pressure leakage in the low pressure chamber was greatly affected by the material and connection method of tubes. The leakage rate in the low pressure chamber with the welding of the stainless tubes and a plate decreased by $0.21kPa{\cdot}h^{-1}$, whereas the leakage in the low pressure chamber with teflon tube and rubber O-ring was given by $1.03kPa{\cdot}h^{-1}$. Pressure in the low pressure chamber was sensitively fluctuated by the air temperature inside the chamber. An elastomer pressure controller was installed to keep the pressure in the low pressure chamber at a setting value. However, inside relative humidity at dark period increased to saturation level.. Two levels (25 and 50kPa) of pressure and two levels (500 and 1,000sccm) of mass flow rate were provided to investigate the effect of low pressure and mass flow rate on relative humidity inside the chamber. It was concluded that low setting value of pressure and high mass flow rate of mixed gas were the effective methods to control the pressure and to suppress the excessive rise of relative humidity inside the chamber.

Exposure Characteristics of 1,3-Butadiene Exposed Workers (1,3-부타디엔 제조 및 취급 근로자의 노출특성에 관한 연구)

  • Choi, Ho Chun;An, Sun Hee;Lee, Hyun Seok;Park, Young Wook;Kim, Kyung Soon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.4
    • /
    • pp.321-327
    • /
    • 2009
  • 1,3-butadiene is classified as suspected human carcinogen, group A2(American Conference of Governmental Industrial Hygienists, ACGIH). In Korea, 1,3-butadiene has been used as a raw material; monomer, homopolymer, polybutadiene latex, acrylonitrile-butadiene-styrene(ABS) and styrene-butadiene rubber(SBR), in the petrochemistry and precision chemistry industry. As petrochemistry industry in Korea has been developed, the potential exposure possibility of 1,3-butadiene to workers can be increased. Therefore the purpose of this study is to evaluate airborne 1,3-butadiene concentration and workers' exposure levels in the workplace using 1,3-butadiene. Air samples were collected with 4-tert-butyl catechol(TBC) charcoal tube(100 mg/50 mg) and were analyzed by gas chromatograph/flame ionization detector(GC/FID) according to the Choi's method(2002). Geometric mean (GM) and arithmetic mean (AM) of total 59 workers' exposure concentrations to airborne 1.3-butadiene were 0.042 ppm and 1.51 ppm, respectively. Although most samples were lower than 1ppm, 2 samples(21.5ppm and 33.1ppm as 8hr-TWA) were exceeded the Korean standard(2ppm) over 10 times at the repair process in synthetic rubber and resin manufacture industry. 14 samples(41%) of total 34 short-term air samples were exceeded the Korean standard(10ppm as STEL) of Ministry Labor. 1,3-butadiene concentration(GM) in the synthetic rubber and resin manufacture industry(7.87ppm) was significantly higher than that in the monomer manufacure industry (0.35ppm)(p<0.05). Also in the sampling and repair process, each GM(range) was 1.39ppm(N.D.-469.6ppm) and 7.85ppm(N.D.-410.2ppm). In conclusion, it depends on the industry and process, 1,3-butadiene can be exposed to workers as high concentration for short-term.

Optimum Design of Liquid Cooling Heat Exchangers and Cooling-Fluid Distributors for a Amplifier Cabinet of Telecommunication Equipment (통신장비용 앰플리파이어 액체냉각장치 및 냉각유체 분배기의 최적설계 및 성능특성)

  • Yun, Rin;Kim, Yong-Chan;Kim, Hyun-Jong;Choi, Jong-Min;Cheon, Deok-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • Three liquid cooling heat exchangers for cooling of telecommunication equipment were designed and their cooling performances were tested. The liquid cooling heat exchangers had twelve rectangular channels $(5\times3 mm)$ with different flow paths of 1, 4, and 12. Silicon rubber heaters were used to provide heat flux to the test section. Heat input was varied from 75 to 400 W, while flow rate and inlet temperature of working fluid were altered from 1.2 to 4.0 liter/fin and from 15 to 3$30^{\circ}C$, respectively. The 4-path heat exchanger showed lower and more uniform average inner temperatures between heaters and the surface of heat exchanger than those of the others. To obtain optimal distribution of working fluid to each channels of liquid cooling heat exchangers, 2-3-2 and 4-3 type tube distributors were designed, and their distribution performances of working fluid were numerically and experimentally investigated. The distributor of the 2-3-2 type showed superior distribution performance compared with those of the 4-3 type distributor.

A Study on the Treatment of Combustible Wastes and the Resource Recovery by Pyrolysis (熱分解에 의한 可燃性 廢棄物의 처리 및 資源回收에 관한 연구)

  • Kim, Sam-Cwan;Zong, Moon-Shik
    • Journal of Environmental Health Sciences
    • /
    • v.13 no.1
    • /
    • pp.17-33
    • /
    • 1987
  • As a result of technical advances and industrialization, the characteristics of domestic and industrial wastes are becoming more complex. Accordingly, improved treatment and disposal systems are being continuously sought to take account of complex characteristics and to comply with economic restrictions. In this study, an application of pyrolysis to the treatment of industrial wastes, including waste scrap rubber, waste raw material used in making the slipper bottom and waste PVC pipe, and the effectiveness of pyrolysis in resource recovery from these wastes were investigated. Batches of wastes were pyrolysed by external heating to a temperature of 400-800$\circ$C in a 32 mm diameter x 0.9 m long silica tube to produce combustible gases, oils and chars. Before the start of pyrolysis runs, the entire system was purged with nitrogen gas to exclude the air. The temperature inside the retort was controlled by the thermocouple in the gas stream, and referred to as the pyrolysis temperature. Under these conditions three products were separately collected and further analyzed. The results were summarized as follows. 1. More gases and less chars were produced with higher pyrolyzing temperature and with higher rates of heating, but the yields of oils tended downwards at temperatures above 700$\circ$C. Accordingly, operating conditions of pyrolysis should be varied with desired material. 2. Calorific values and sulfur contents of produced oils were sufficient and suitable for fuel use. Chars from waste rubber had high heating values with low sulfur contents, but calorific values of chars from waste PVC and waste slipper were as low as 3, 065-4, 273 kcal/kg and 942-2, 545 kcal/kg, respectively. Therefore, char from these wastes are inappropriate for fuel. 3. Soluble contents of Pb, Cd, Cu and Zn in chars from waste rubber and waste slipper were below the Specific Hazardous Waste Treatment Standards. However soluble contents of Pb and Cd in chars from waste PVC were one or two times and five or seven times exceedingly the Specific Hazardous Waste Treatment Standards, respectively. 4. Post high heating is desirable for treatment method of waste PVC which generates toxic hydrogen chloride. 5. The proportions of hydrogen, methane and ethane in produced gases were in the range of 3.99-35.61% V/V, 18.22-32.50% V/V and 5.17-5.87% V/V, respectively. 6. Pyrolysis is a useful disposal method in case of waste slipper, which was hardly combustible, and thus investigations of this kind of materials are required for effective management of industrial waste. 7. Based upon the possible market development for products, overall pyroly economics to take account of treatment values of noncombustible or hazardous materials should be evaluated.

  • PDF

A Study on Characteristics of Exposure to Tetrahydrofuran of Manufacturing and Handling Workers (테트라하이드로퓨란 제조 및 취급 근로자의 노출특성에 관한 연구)

  • Chio, Ho Chun;Hong, Jwa Ryung;Lee, Gye Young;Kim, Doo Ho;Park, Chung Yill
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.3
    • /
    • pp.156-161
    • /
    • 2011
  • Objectives: Tetrahydrofuran (THF) is a colorless, water-miscible organic liquid with low viscosity at standard temperature and pressure. THF has been used as a solvent and a precursor for various syntheses of polymers. However, THF is known to irritate to the eyes, skin and mucus membranes. Overexposure by inhalation, ingestion or skin contact may produce nausea, dizziness, headaches, respiratory irritation and possible skin burns. The purpose of this study is to evaluate of the worker exposure and characteristics of workers in the workplaces that use or manufacture THF. Methods: Sixteen factories in Korea, which manufacture or use THF, were selected for this study and a total of 130 air samples including 104 time-weighted average (TWA) samples and 26 short-term exposure limit (STEL) samples, were collected. Air samples were collected with charcoal tube (100mg/50mg) and analyzed by gas chromatograph/flame ionization detector(GC/FID). Results: The TWA concentration of THF was 16.05ppm (GM) at PS script printing, 2.32ppm (GM) at PVC stabilizer, 1.03ppm (GM) at Lithium triethylborohydride, 0.63ppm (GM) at Polytetramethylene ether glycol(PTMEG), 0.42ppm (GM) at Manufacturing THF, 0.13ppm (GM) at Glue and 0.12ppm (GM) at synthetic rubber/resins. Two out of sampes for PS script printing exceeded 50ppm as 8-hour exposure limit of MOEL. The short term exposure to THF was 54.77ppm (GM) at PS script printing, 17.10ppm (GM) at PTMEG, 13.76ppm (GM) at Manufacturing THF, 2.86ppm (GM) at Lithium triethylborohydride, 0.87ppm (GM) at synthetic rubber/resins and 0.13ppm (GM) Glue. We found that the highest exposure process for both the TWA and STEL samples was PS script process. Two samples exceeded 100ppm as short term exposure limit of Ministry of Employment and Labor(MOEL). Conclusions: Characteristic of STEL concentration for THF is considerably different from TWA concentration in workplaces because workers could exposure high concentration of THF in a moment when they work irregularly schedule. So exposure controls for momentary works have to be prepared, and considered the skin absorption and inhale of THF.