• Title/Summary/Keyword: rsm method

Search Result 501, Processing Time 0.026 seconds

Optimum Design of A-Pillar Trim for Occupant Protection (승원 안전을 고려한 승용차 A-Pillar Trim의 최적 설계)

  • 김형곤;강신일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.99-106
    • /
    • 2001
  • NHTSA has been conducting biomechanical studies to reduce inujuries sustained sustained during automotive collision. Furthermore, NHTSA added the regulation to the FMVSS 201, limiting the equivalent HIC(Head Injury Criterion) value under 1000. In the presont work, a methodology was developed for the optimum design of the A-pillar trim with rib-structures. The design variables for the rib-strucrures were the transverse spacing, the longitudinal spacing, and the thickness. The required sets of the design varibles were decided based on the design of experiments. The head impact simulations were carried out using the LS-DYNA3D, and the HIC(d) values were computed using the resulrs of the head impact simulation. The objective function was constructed using the response surface methed (RSM). When the obtained optimum values were not inside the region of interest, the design proceduers were repeated by changing the region of interest. Finally, an A-pillar trim with rib-structures, which resulred in HIC(d) value under 850 for 15 mph head-trim impact, was developed.

  • PDF

The Crush Energy Absorption Capacity Optimization for the Side-Member of an Aluminum Space Frame Vehicle (알루미늄 차체의 사이드멤버 충돌에너지 흡수성능 최적설계)

  • 김정호;김범진;허승진;김민수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.94-100
    • /
    • 2004
  • In order to improve the frontal crash performance of an Aluminum Space Frame Vehicle, this presents a systematic optimal design process to maximize the crush energy absorption capacity of side-members while satisfying the maximum displacement constraint. In this study, five design types are studied for selecting a good collapse initiator. Then, for the selected collapse initiator type, 7 design variables are defined to represent cross section shape, thickness and bead interval. The systematic optimization processor, R-INOPL uses DOE, RSM and numerical optimization techniques. R-INOPL uses only 14 analyses to solve the 7 design variable optimization problem the final design can improve 103.9% of the internal energy and reduce 13.9% of the maximum displacement.

The Optimization of the Selective CVD Tungsten Process using Statistical Methodology (통계적 기법을 이용한 선택적 CVD 텅스텐 공정 최적화 연구)

  • 황성보;최경근;박흥락;고철기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.12
    • /
    • pp.69-76
    • /
    • 1993
  • The statistical methodology using RSM (response surface method) was used too ptimize the deposition conditions of selective CVD tungsten process for improving the deposition rate and the adhesion property. Temperature, flow rate of SiH$_4$ and WF$_6$ and H$_2$ and Ar carrier gases were chosen for the deposition variables and process characteristics due to carrier gas were intensively investigated. It was observed that temperature was the main factor influencingthe deposition rate in the case of H$_2$ carrier gas while the reactant ratio, $SiH_{4}/WF_{6}$, had the principal effect on the deposition rate in the case of Ar carrier gas. The increased deposition rate and the good adhesion to Si were obtained under Ar carrier gas compared to H$_2$ carrier gas. The optimum conditions for deposition rate and antipeeling property were found to be the temperature range of 300~32$0^{\circ}C$ and the reactant ratio, $SiH_{4}/WF_{6}$, of 0.5~0.6.

  • PDF

Cost Reduction Design in Single-phase Line-start Permanent Magnet Motor (단상 유도형 동기 전동기의 Cost 저감 설계)

  • Lee, Byeong-Hwa;Nam, Hyuk;Lee, Jeong-Jong;Fang, Liang;Hong, Jung-Pyo;Ha, Seung-Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2208-2212
    • /
    • 2008
  • This paper deals with the cost reduction design of a single-phase line-start permanent magnet(LSPM) motor. Due to high cost of the permanent magnet(PM), cost reduction can be effectively achieved by reducing PM volume. Therefore, motor characteristics according to the PM volume are calculated by using d-q axis equivalent circuit analysis, and the characteristic map is made. In the characteristic map, maximum torque and efficiency are shown according to motor parameters such as back electromotive force(back emf) and inductances; back emf represents the PM volume. Minimum back emf and inductances satisfying output performance are determined in the characteristic map. Then, motor geometry based on the prototype motor is optimized to get the determined parameters using response surface methodology(RSM) and finite element method(FEM). Through the presented cost reduction design, total PM volume is reduced to 32% of prototype model.

Pareto Optimal Design of the Vehicle Body (차체의 팔렛토 최적 설계)

  • Kim, Byoung-Gon;Chung, Tae-Jin;Lee, Jeong-Ick
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2008
  • The important dynamic specifications in the aluminum automobile body design are the vibrations and crashworthiness in the views of ride comforts and safety. Thus, considerable effort has been invested into improving the performance of mechanical structures comprised of the interactive multiple sub-structures. Most mechanical structures are complex and are essentially multi-criteria optimization problems with objective functions retained as constraints. Each weight factor can be defined according to the effects and priorities among objective functions, and a feasible Pareto-optimal solution exists for the criteria-defined constraints. In this paper, a multi-criteria design based on the Pareto-optimal sensitivity is applied to the vibration qualities and crushing characteristics of front structure in the automobile body design. The vibration qualities include the idle, wheel unbalance and road shake. The crushing characteristic of front structure is the axial maximum peak load.

Design of Pitot-Tube Configuration Using CFD Analysis and Optimization Techniques (CFD 해석 및 최적화 기법을 이용한 피토관 형상설계)

  • Kim, Do-Jun;Cheon, Young-Seong;Myong, Rho-Shin;Park, Chan-Woo;Cho, Tae-Hwan;Park, Young-Min;Choi, In-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.392-399
    • /
    • 2008
  • Accurate measurement of speed and altitude of flying vehicles in air data system remains a critical technical issue. A highly reliable Pitot-static probe is required to obtain air data such as total pressure and static pressure. In this study, an analysis of the characteristics of flowfield around the Pitot-static probe was performed by using a Navier-Stokes CFD code. In addition, for the purpose of finding an optimal configuration, a technique based on the response surface method is applied to the problem with design parameters including shape of the nose section and cone angle. It is shown that the optimal configuration fulfills the MIL specification in wider range of high angles of attack.

An Optimal Design Method on system of Flexible Manufacturing Cells(FMCs) using Simulation Technology

  • Lee, Seung-Hyun;Yoo, Wang-Jin;Yoon, Hee-Jung;Lim, Ik-Sung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.53
    • /
    • pp.89-97
    • /
    • 1999
  • We are concerned with the optimal design of flexible manufacturing cells in this study, thus try to suggest the detail information for each resource on the optimal conditions. Object oriented simulation technology is used to write models more easily and to execute simulation running time more rapidly, and the optimal level of relevant decision variables is probed by response surface methodology(RSM), which is well known for the optimization technology based on experiment design and regression equation. We investigate the optimal level for the number of pallets and the speed of AGVs of FMC systems, carry out the performance analysis of this system. Consequently we suggest systematic procedures for the optimization of FMCs in detail design stage.

  • PDF

Flow Factor Prediction of Centrifugal Hydraulic Turbine for Sea Water Reverse Osmosis (SWRO)

  • Ma, Ying;Kadaj, Eric;Terrasi, Kevin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.369-378
    • /
    • 2010
  • The creation of the hydraulic turbine flow factor map will undoubtedly benefit its design by decreasing both the design cycle time and product cost. In this paper, the geometry and flow variables, which effectively affect the flow factor, are proposed, analyzed and determined. These flow variables are further used to create the operating condition maps by using different model approaches categorized into Response Surface Method (RSM) and Artificial Neural Network (ANN). The accuracies of models created by different approaches are compared and the performances of model approaches are analyzed. The influences of chosen variables and the combination of Principle Component Analysis (PCA) and model approaches are also studied. The comparison results between predicted and actual flow factors suggest that two-hidden-layer Feed-forward Neural Network (FFNN), and one.hidden-layer FFNN with PCA has the best performance on forming this mapping, and are accurate sufficiently for hydraulic turbine design.

A Minimization Study of Consuming Current and Torque Ripple of Low Voltage BLDC Motor (저전압용 BLDC 전동기의 소비전류 및 토크리플 최소화 연구)

  • Kim, Han-Deul;Shin, Pan Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1721-1724
    • /
    • 2017
  • This paper presents a numerical optimization technique to reduce input current and torque ripple of the low voltage BLDC motor using core, coil and switching angle optimization. The optimization technique is employed using the generalized response surface method(RSM) and sampling minimization technique with FEM. A 50W 24V BLDC motor is used to verify the proposed algorithm. As optimizing results, the input current is reduced from 2.46 to 2.11[A], and the input power is reduced from 59 [W] to 51 [W] at the speed of 1000 [rpm]. Also, applied the same optimization algorithm, the torque ripple is reduced about 7.4 %. It is confirmed that the proposed technique is a reasonably useful tool to reduce the consuming current and torque ripple of the low voltage BLDC motor for a compact and efficient design.

High-velocity powder compaction: An experimental investigation, modelling, and optimization

  • Mostofi, Tohid Mirzababaie;Sayah-Badkhor, Mostafa;Rezasefat, Mohammad;Babaei, Hashem;Ozbakkaloglu, Togay
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.145-161
    • /
    • 2021
  • Dynamic compaction of Aluminum powder using gas detonation forming technique was investigated. The experiments were carried out on four different conditions of total pre-detonation pressure. The effects of the initial powder mass and grain particle size on the green density and strength of compacted specimens were investigated. The relationships between the mentioned powder design parameters and the final features of specimens were characterized using Response Surface Methodology (RSM). Artificial Neural Network (ANN) models using the Group Method of Data Handling (GMDH) algorithm were also developed to predict the green density and green strength of compacted specimens. Furthermore, the desirability function was employed for multi-objective optimization purposes. The obtained optimal solutions were verified with three new experiments and ANN models. The obtained experimental results corresponding to the best optimal setting with the desirability of 1 are 2714 kg·m-3 and 21.5 MPa for the green density and green strength, respectively, which are very close to the predicted values.