• Title/Summary/Keyword: rpm

Search Result 4,003, Processing Time 0.037 seconds

Factorial design에 의한 Acetobacter xylinum KJ1의 Bacterial cellulose 생산조건의 최적화

  • Lee, Ji-Eun;Jeong, Sang-Gi;Lee, Yong-Un;Jeong, Seon-Yong;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.131-135
    • /
    • 2002
  • Acetobacter xylinum KJ1 efficiently producing bacterial cellulose(BC) in shaking culture was isolated from a rotten grape. The strain was used to investigate optimum operating conditions for increasing BC production and factorial design model was employed for the optimization. The results of experiments were statistically analyzed by SAS program. Reciprocal effects of each factors(carbon source concentration, shaking speeds(rpm), oxygen pressure, and CSL concentration) and culture condition of BC production were examined by getting regression equation of the dependent variable. Comparisons between experimental results and predicted results about BC concentration were done in total 24 experiments by combination of each factors using SAS program, and the correlation coefficients of BC concentration and BC yield were 0.91 and 0.81, respectively. The agitated cultures were performed in various operation conditions of factors which affected considerably to BC production in jar fermentor. The results showed that BC concentration was 11.67g/ L in 80 hours cultivation under the condition of carbon source concentration shaking speeds(rpm) : oxygen pressure: CSL concentration = 4% : 460rpm : 0.28 : 6%. On the other hand BC yield was 0.42g/g in 80 hours cultivation under the condition of carbon source concentration shaking speeds(rpm) : oxygen pressure: CSL concentration = 4% : 564rpm : 0.21 : 2%. The BC production could be enhanced up to more than 65.3% by factorial design. The result of a verifying experiment under the optimal conditions determined by the factorial design to the BC production showed that the model was appropriate by obtaining BC concentration of 11.02g/L in the optimum condition

  • PDF

The Development of the Automatic Transmission for Bicycle Using Internally Geared Hub (내장기어허브를 이용한 자전거 자동변속장치의 개발)

  • Lee, Man Ho;Choi, Jun Ho;Lee, Kun Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.393-400
    • /
    • 2014
  • In this study, an automatic transmission was developed for a bicycle. This transmission uses the pedal rpm and riding speed information for efficient riding. This transmission was installed on a bicycle using an internally geared hub. The automatic transmission was developed for a beginner to ride with proper gear changes. Indoor ride tests were performed to assess the performance of this transmission. Here, a 'beginner' is defined as a bicycle rider who can maintain a riding power of ~150W with a maximum heart rate of ~80%. Furthermore, 'ride with proper gear change' means that the rider could ride the bicycle while maintaining an efficient pedal rpm by the automatic transmission. One expert and four beginners participated in the ride test. The expert was chosen for the comparison with the beginners. To minimize environmental disturbances, the ride test was performed indoors. In this test, two types of gear changes manual and automatic were tested on two types of roads a road with a gradual incline of 0-3% and a road that simulates the bicycle road along the Han river in Seoul. The results of the ride tests show that the algorithm applied for the automatic transmission helps beginners to ride the bicycle efficiently.

Effects of Inlet-Manifold Water Addition on the Performance of Kerosene Engines (석유(石油)엔진의 흡기관내(吸氣管內)의 물 부가(附加)가 엔진성능(性能)에 미치는 영향(影響))

  • Yi, Chun Woo;Ryu, Kwan Hee
    • Journal of Biosystems Engineering
    • /
    • v.8 no.1
    • /
    • pp.38-46
    • /
    • 1983
  • This study was carried out to investigate the possibility of improving the performance of a kerosene engine with water addition. The engine used in this study was a single-cylinder, four-cycle kerosene engine with the compression ratio of 4.5. Water could be successfully added into the inlet manifold by an extra carburetor for the volumetric ratios of 5, 10, 20, and 30 percents. Variable speed tests at wide-open throttle were performed for five speed levels in the range of 1,000 to 2,200rpm for each fuel type. Volumetric efficiency and brake specific fuel consumption were determined, and brake thermal efficiency based on the lower heats of combustion of kerosene was calculated. To examine variation in fuel consumption, CO concentration, and cooling water temperature, part load tests were also performed. The results obtained are summarized as follow. (1) Brake torque increased almost in proportion to volumetric efficiency. But the ratio of increase in torque was greater than that of volumetric efficiency. Mean torque over the speed range of 1,000 to 2,200rpm increased 1, 3, 7, and 2 percents for 5, 10, 20, and 30 percents water addition, respectively. The increase in brake torque with water addition was greater at lower speeds. (2) Mean brake specific fuel consumption over the speed range of 1,000 to 2,200rpm decreased 1, 2, 3, and 3 percents for 5, 10, 20, and 30 percents water addition, respectively. (3) Mean temperature of cooling water over the speed range of 1,000 to 2,200rpm decreased 2, 4, 8, and 12 percents for 5, 10, 20, and 30 percents water addition, respectively. (4) The effects of decreasing CO concentration in the exhaust emissions with water addition were significant. At the speed range of 1,000 to 2,200rpm, CO concentration in the exhaust emissions decreased 2, 10, 23, percents for 5, 10, and 20 percents water addition, respectively. (5) Deposits were not discovered in the combustion chamber during the experiment. However, a little rust was formed in the water-supply carburetor.

  • PDF

A Study on the Ship's Speed for Reducing the Fuel Oil Consumption in Actual Ships (선박의 연료소모량 절감을 위한 항해 속력에 관한 연구)

  • Kim, Soon-Kap;Lee, Yun-Sok;Kong, Gil-Young;Kim, Jong-Pil;Jung, Chang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.1
    • /
    • pp.41-47
    • /
    • 2012
  • Recently, due to the rapid rise of the international oil price, the burden of fuel oil expense is relatively increasing in a ship. And the international restriction of the greenhouse gas which was generated from the burning of fuel oil is also rapidly strengthened. Therefore, to reduce the greenhouse gas and fuel oil consumption, many shipping company adopted the low speed navigation and it was focused on the improvement of fuel consumption efficiency and the usage of alternative energy in the marine engine development field. In this paper, the fuel oil consumption according to the ship's speed was measured in the actual seas and analyzed the shop test results in the shipyard and the ship navigation data from the abstract log. And then it was proposed that the ship's economic speed was 14~15kts and the optimum rpm was 140~150 in specific sea conditions.

Optimization of the Extrusion Processing Conditions of Soymilk Residue and Corn Grits Mixture (두유박과 옥분 혼합물 압출성형 제조공정의 최적화)

  • 한규홍;김병용
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1270-1277
    • /
    • 2003
  • The extrusion conditions of the soymilk residue and corn grits mixtures were optimized. The experiment was designed according to the D-optimal design of response surface methodology (RSM), which shows 18 experimental points including 4 replicates for three independent variables (screw speed, water content and die temperature). The responses variables such as bending force, expansion ratio, bulk density, water solubility index (WSI), water absorption index (WAI), and color values (L*, a*, b*) were evaluated using response surface analysis. Expansion ratio and WSI decreased with increasing water content, whereas bulk density tended to increase with increasing water content. While greater screw speeds enhanced WSI and yellowness, higher moisture contents decreased the expansion ratio and WSI value. However, die temperature did not influence upon the response variables. The optimum extrusion conditions by numerical and graphical methods were similar: the screw speed, water content, and die temperature were 250 rpm, 22.43% and l28.16$^{\circ}C$ by the numerical method; 250 rpm, 22.43%, and 128.02$^{\circ}C$ by graphical method.

Studies on Development of Fuel Substitute for Diesel Engine with Seed Oil of Evodia Daniellii (쉬나무 종실유의 디젤기관 대체연료 개발에 관한 연구 - Engine 성능 및 견인력을 중심으로 -)

  • Choi, Kyu-Hong;Hong, Sung-Gak;Lee, Yeo-Ha;Lee, Seung-Kee;Shin, Seung-Geuk
    • Journal of Korea Foresty Energy
    • /
    • v.7 no.1
    • /
    • pp.28-36
    • /
    • 1987
  • To know the possibility of fuel substitution for Diesel engine with the seed oil of Evodia daniellii, which is one of the native oil seed trees in Korea. the refined seed oil mixed with light oil in the various rates was tested in the 8 PS Diesel engine: the output, the fuel consumption rate, the governor performance, the rpm stability in the total loading condition. the content of graphite in the burned gas, and the traction coefficients at the different gear stages were maintained The following results were discussed. 1. The output at the normal revolution (2200rpm)was increased as the percent seed oil increased. At the lower rpm (2000-1500rpm )there were no consistent difference in the outputs among fuels of the different percent seed oil 2. The rate of fuel consumption was inclosed as the percent seed oil increased in each loading condition. 3. The more percent sud oil was mixed in the fuel. the better governor performance appeared at both the instantaneous and stable speed. 4. The more percent seed oil was mixed In the fuel, the more stable rpm ratio was maintained 5. The graphite content In the burned gas was increased as the load increased, but there was no apparent difference in the content at each load among the 100$\%$ seed oil, the 100$\%$ light oil, and the mixtures in various rates. 6. In all fuel mixtures the maximam traction coefficent appeared at the third transmission gear stage. Generally in over all transmission gear stages the fuel mixtures of the seed oil:light oil ratio from 7:3 to 5:5 resulted greater traction force than the other fuels.

  • PDF

Calculation of Detector Positions for a Source Localizing Radiation Portal Monitor System Using a Modified Iterative Genetic Algorithm

  • Jeon, Byoungil;Kim, Jongyul;Lim, Kiseo;Choi, Younghyun;Moon, Myungkook
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.212-221
    • /
    • 2017
  • Background: This study aims to calculate detector positions as a design of a radioactive source localizing radiation portal monitor (RPM) system using an improved genetic algorithm. Materials and Methods: To calculate of detector positions for a source localizing RPM system optimization problem is defined. To solve the problem, a modified iterative genetic algorithm (MIGA) is developed. In general, a genetic algorithm (GA) finds a globally optimal solution with a high probability, but it is not perfect at all times. To increase the probability to find globally optimal solution rather, a MIGA is designed by supplementing the iteration, competition, and verification with GA. For an optimization problem that is defined to find detector positions that maximizes differences of detector signals, a localization method is derived by modifying the inverse radiation transport model, and realistic parameter information is suggested. Results and Discussion: To compare the MIGA and GA, both algorithms are implemented in a MATLAB environment. The performance of the GA and MIGA and that of the procedures supplemented in the MIGA are analyzed by computer simulations. The results show that the iteration, competition, and verification procedures help to search for globally optimal solutions. Further, the MIGA is more robust against falling into local minima and finds a more reliably optimal result than the GA. Conclusion: The positions of the detectors on an RPM for radioactive source localization are optimized using the MIGA. To increase the contrast of the measurements from each detector, a relationship between the source and the detectors is derived by modifying the inverse transport model. Realistic parameters are utilized for accurate simulations. Furthermore, the MIGA is developed to achieve a reliable solution. By utilizing results of this study, an RPM for radioactive source localization has been designed and will be fabricated soon.

Development of Automatic Backwashing Treatment System for Ballast Water (자동역세척 여과장치를 이용한 선박 밸러스트수 처리)

  • Park Sang-Ho;Lim Jae-Dong;Kim In-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.181-185
    • /
    • 2005
  • The treated ballast water from previous treatment contains microorganisms and pathogenic organisms in an filtration treatment system. The advantage of this process can be filtrated to minimize the demage to screen clogging of drum filter with sweeping the solids off rotating the surface of the filter. Another advantage is to drop off the solids with controlling revolution of drum screen in pretreatment filtration process. Also the fact that it is easy to attach and detach a several type of screen for getting the expected water quality is another advantage, too. Filter rotation speed at 20rpmis 40.5cmHg and 40rpm is 36.6cmHg. Filter out impurities from ballast water over 60rpm is 35cmHg. Filtration system removal aquatic organism over $80{\mu}m$ in ballast water. This study shows that the filtration treatment system has a potential for the removal of ballast water.

  • PDF

A study on the contactless generator and recharge system for a bicyle (비접촉식 자전거 발전기 및 충전 시스템 개발에 관한 연구)

  • Park, Wang-Geun;Won, Si-Tae
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, the non-contact type bicycle generator system considering the recharge is developed to use the eco-friendly energy source when the bicycle is operating. The following three main factors are considered in this study. One of factors is that the intensity of the rotating magnet is in the range of 2,700~4,300 [Gause]. The next factor is that the separation distance of rotating magnet and bicycle rim is in the range of 1.5-3.0 mm. The last factor is that the pedaling speed is in the range of 55 RPM [Wheel speed 5.6Km]~150 RPM [Wheel speed 15.25Km] consirering with the 5 staged gear transmission. The obtained results are as followed. (1) The generator output voltage gradually increases from 3V to 10V with the pedaling speed increases, at the separation distance is less than 2.5 mm and the operating voltage of the LED lamp is generated at a pedaling speed of 60 RPM or more. (2) The output current of the generator increases from 20mA to 40mA with the pedaling speed increases, at a separation distance is less than 2.0 mm and the operating current of the LED lamp is generated at a pedaling speed of 60 RPM or more. (3) When the separation distance was 3.0 mm, the output voltage and current are significantly lower than those of the bicycle LED lamp is generated. (4) The charging time is expected to be 12.24 ~ 17.65 hours when the magnitude of the magnet is 3,400[Gauss] at a pedaling speed of 55 RPM or more. (5) As a result of this study, it is thought that the non-contact type bicycle generator system considering the recharge can replace the conventional friction power generation system.

Bubble Behavior in Centrifugal Fluidized Bed of Fine Particles (원심유동층에서 Al2O3의 기포 거동에 관한 연구)

  • Rhee, Kwan-Seok;Kum, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1446-1452
    • /
    • 2009
  • The behavior of bubbles in a centrifugal fluidized bed with a 340mm inner diameter, 195mm high was observed by photographs using 10.5${\mu}m$and 21.5${\mu}m$mean diameter of $Al_2O_3$particles as bed materials at each of 400rpm, 600rpm, 800rpm, and 1000rpm number of rotations of the rotor. At these experimental ranges, the experimental results clearly proved the effect of number of rotations of the rotor on the behavior of bubbles in the centrifugal fluidized bed. As the number of rotations of the rotor increased, the gas velocity at which bubbles begin to be formed also increased but diameter of bubbles decreased. And sizes of the bubbles were relatively small.