• 제목/요약/키워드: routing asymmetry

검색결과 3건 처리시간 0.017초

다중 홉 무선 메쉬 네트워크에서 최적 경로에 관한 연구 (Studying Route Optimality in Multi-Hop Wireless Mesh Networks)

  • 김성관;이옥환;이성주;최성현
    • 한국통신학회논문지
    • /
    • 제34권1B호
    • /
    • pp.16-23
    • /
    • 2009
  • 이 논문은 멀티 홉 무선 메쉬 네트워크에서 제공하는 라우팅 프로토콜이 적용된 라우팅 metric에 따라 최적의 경로를 얼마나 잘 찾는가에 관한 논문이다. 최근에 제시된 라우팅 metric은 Link Quality (LQ)를 정확히 나타내도록 설계되어있지만, 많은 metric들은 그것을 기반으로 찾은 경로들이 얼마나 많은 비율로 최적의 경로를 찾을 수 있는지에 대해서 검증하지 않았다. 우리는 최근에 잘 디자인된 라우팅 metric들과 가장 많이 사용되는 라우팅 프로토콜의 다양한 조합을 고려하였다. 그리고 각각의 라우팅에서 찾은 경로의 최적 정도를 살펴보았습니다. 또한 무선 링크의 비대칭성을 반영한 metric을 위해서 단 방향성을 가지는 라우팅 프로토콜을 제안한다. 시뮬레이션을 통해서 만들어진 최적 경로의 비율이 살펴본 모든 라우팅 metric 및 프로토콜 그리고 네트워크 구조에 대해서 네트웍 트래픽 양에 따라 감소하는 현상을 알 수 있다.

A Connection Management Protocol for Stateful Inspection Firewalls in Multi-Homed Networks

  • Kim, Jin-Ho;Lee, Hee-Jo;Bahk, Sae-Woong
    • Journal of Communications and Networks
    • /
    • 제10권4호
    • /
    • pp.455-464
    • /
    • 2008
  • To provide network services consistently under various network failures, enterprise networks increasingly utilize path diversity through multi-homing. As a result, multi-homed non-transit autonomous systems become to surpass single-homed networks in number. In this paper, we address an inevitable problem that occurs when networks with multiple entry points deploy firewalls in their borders. The majority of today's firewalls use stateful inspection that exploits connection state for fine-grained control. However, stateful inspection has a topological restriction such that outgoing and incoming traffic of a connection should pass through a single firewall to execute desired packet filtering operation. Multi-homed networking environments suffer from this restriction and BGP policies provide only coarse control over communication paths. Due to these features and the characteristics of datagram routing, there exists a real possibility of asymmetric routing. This mismatch between the exit and entry firewalls for a connection causes connection establishment failures. In this paper, we formulate this phenomenon into a state-sharing problem among multiple fire walls under asymmetric routing condition. To solve this problem, we propose a stateful inspection protocol that requires very low processing and messaging overhead. Our protocol consists of the following two phases: 1) Generation of a TCP SYN cookie marked with the firewall identification number upon a SYN packet arrival, and 2) state sharing triggered by a SYN/ACK packet arrival in the absence of the trail of its initial SYN packet. We demonstrate that our protocol is scalable, robust, and simple enough to be deployed for high speed networks. It also transparently works under any client-server configurations. Last but not least, we present experimental results through a prototype implementation.

A Novel Opportunistic Greedy Forwarding Scheme in Wireless Sensor Networks

  • Bae, Dong-Ju;Choi, Wook;Kwon, Jang-Woo;Choo, Hyun-Seung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권5호
    • /
    • pp.753-775
    • /
    • 2010
  • Greedy forwarding is a key mechanism of geographic routing using distance as a metric. As greedy forwarding only uses 1-hop neighbor node information, it minimizes routing overhead and is highly scalable. In existing greedy forwarding schemes, a node selects a next forwarding node based only on the distance. However, the signal strength in a realistic environment reduces exponentially depending on the distance, so that by considering only the distance, it may cause a large number of data packet retransmissions. To solve this problem, many greedy forwarding schemes have been proposed. However, they do not consider the unreliable and asymmetric characteristics of wireless links and thus cause the waste of limited battery resources due to the data packet retransmissions. In this paper, we propose a reliable and energy-efficient opportunistic greedy forwarding scheme for unreliable and asymmetric links (GF-UAL). In order to further improve the energy efficiency, GF-UAL opportunistically uses the path that is expected to have the minimum energy consumption among the 1-hop and 2-hop forwarding paths within the radio range. Comprehensive simulation results show that the packet delivery rate and energy efficiency increase up to about 17% and 18%, respectively, compared with the ones in PRR${\times}$Distance greedy forwarding.