• Title/Summary/Keyword: route discovery time

Search Result 34, Processing Time 0.54 seconds

Pro-active Routing Selection and Maintenance Algorithms for Mobile Ad Hoc Network Environments (이동 Ad Hoc 네트워크 환경에서 사전 활성화 라우팅 선택과 관리유지 알고리즘)

  • Cho Young-Joo;Chung Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.606-614
    • /
    • 2006
  • The conventional on-demand mobile ad hoc routing algorithms (DSR and AODV) initiate route discovery only after a path breaks, incurring a significant cost and time in detecting the disconnection and establishing a new route. In this theory, we investigate adding proposed pro-active route selection and maintenance to the conventional on-demand mobile ad hoc routing algorithms(DSR and AODV). The key idea is to be only considered likely to be a path break when the received packet power becomes close to the minimum critical power and to be generated the forewarning packet when the signal power of a received packet drops below a optimal threshold value. After generated the forewarning packet, the source node can initiate rout discovery in advance; potentially avoiding the disconnection altogether. Our extensive simulation study shows that the proposed advance-active route selection and maintenance algorithms outperforms the conventional on-demand routing protocol based on DSR and AODV in terms of packet delivery ratio, packet latency and overhead.

  • PDF

Study on Dynamic Source Routing Protocol for Mobile Ad Hoc Networks (이동 Ad Hoc 망에 대한 동적 소스 라우팅 프로토콜에 관한 연구)

  • 하재승
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.9
    • /
    • pp.1219-1224
    • /
    • 2001
  • There can exist unidirectional links due to asymmetric property of mobile terminals or current wireless environments on practical mobile ad hoc networks. However, at present, the existing mobile ad hoc routing protocols are implemented to support only bidirectional links. Thus, in this paper, we extend the existing dynamic source routing protocol in order to implement a new routing protocol, which is fit to mobile ad hoc networks containing unidirectional links. For performance evaluation, we use combinations of mobility scenario files and connection pattern files from Carnegimelon Univ. We consider received data rate and average route discovery time as evaluation items, which are compared and evaluated for three suggested route discovery methods.

  • PDF

Secure Routing Mechanism using one-time digital signature in Ad-hoc Networks (애드혹 네트워크에서의 one-time 전자 서명을 이용한 라우팅 보안 메커니즘)

  • Pyeon, Hye-Jin;Doh, In-Shil;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.623-632
    • /
    • 2005
  • In ad-hoc network, there is no fixed infrastructure such as base stations or mobile switching centers. The security of ad-hoc network is more vulnerable than traditional networks because of the basic characteristics of ad-hoc network, and current muting protocols for ad-hoc networks allow many different types of attacks by malicious nodes. Malicious nodes can disrupt the correct functioning of a routing protocol by modifying routing information, by fabricating false routing information and by impersonating other nodes. We propose a routing suity mechanism based on one-time digital signature. In our proposal, we use one-time digital signatures based on one-way hash functions in order to limit or prevent attacks of malicious nodes. For the purpose of generating and keeping a large number of public key sets, we derive multiple sets of the keys from hash chains by repeated hashing of the public key elements in the first set. After that, each node publishes its own public keys, broadcasts routing message including one-time digital signature during route discovery and route setup. This mechanism provides authentication and message integrity and prevents attacks from malicious nodes. Simulation results indicate that our mechanism increases the routing overhead in a highly mobile environment, but provides great security in the route discovery process and increases the network efficiency.

A Reliable Route Selection Algorithm in Mobile Ad-hoc Networks (이동 애드혹 네트워크에서의 안정 경로 선택 알고리즘)

  • Kim, Won-Ik;Suh, Young-Joo;An, Syung-Og
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.314-323
    • /
    • 2002
  • The routing protocols designed for wired networks can hardly be used for mobile ad-hoc networks due to limited bandwidth of wireless transmission and unpredictable topological change. Recently, several routing protocols for mobile ad-hoc networks have been Proposed. However, when theme protocols are applied to support real time services like multimedia transmission, they still have problems in ad-hoc networks, where the topology changes drastically. In this paper, we propose a new route selection algorithm which selects the most reliable route that is impervious to route failures by topological changes by mobile hoots. For reliable route selection, the concept of virtual zone (stable zone and caution zone) is proposed. The zone is located in a mobile node'transmission range and determined by mobile node's mobility information received by Global Positioning System (GPS). The proposed algorithm is applied to the route discovery procedure of the existing on-demand routing protocol, AODV, and evaluated by simulation in various traffic conditions and mobility patterns.

An Energy Aware Source Routing with Disjoint Multipath Selection for Wireless Sensor Networks (무선 센서네트워크에서 다중 경로 선정에 기반한 에너지 인식 소스 라우팅 프로토콜)

  • Hwang Do-youn;Lim Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1A
    • /
    • pp.23-29
    • /
    • 2006
  • In wireless sensor networks(WSNs), it is crucial to maintain network connectivity as long as possible since nodes are battery-powered and unchange-able. We propose a new routing protocol called Energy Aware Source Routing(EASR) which can be efficient in respect of network lifetime and long-term connectivity. Our protocol is multipath source routing, only one path will be selected at the same time and each path has probability to be selected like as Energy Aware Routing(EAR) protocol. The route discovery procedure of EASR protocol is reformed from the route discovery procedure of Split Multipath Routing(SMR) protocol. However, there is the difference between SMR and EASR. In EASR, we define an overhearing ratio in order to reduce energy waste due to overhearing effect among each selected path. Thus, we can establish energy efficient multiple paths by making use of overhearing ratio. The simulation results are also demonstrated that our scheme increases in network lifetimes, and achieves reasonable packet latency time.

Route-optimized Handoff in Mobile CORBA Environment (Mobile CORBA 환경에서 게이트웨이간의 경로최적화 핸드오프)

  • Shin, Hye-Ryung;Lee, Hyung-Woo;Kim, Ju-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.224-232
    • /
    • 2002
  • The routing protocols designed for wired networks can hardly be used for mobile ad-hoc networks due to limited bandwidth of wireless transmission and unpredictable topological change. Recently, several routing protocols for mobile ad-hoc networks have been proposed. However, when these protocols are applied to support real time services like multimedia transmission, they still have problems in ad-hoe networks, where the topology changes drastically. In this paper, we propose a new route selection algorithm which selects the most reliable rouse that is impervious to route failures by topological changes by mobile hosts. For reliable route selection, the concept of virtual zone (stable lone and caution zone) is proposed. The lone is located in a mobile node's transmission range and determined by mobile node's mobility information received by Global Positioning System (GPS). The proposed algorithm is applied to the route discovery procedure of the existing on-demand routing protocol, AODV, and evaluated by simulation in various traffic conditions and mobility patterns.

Analysis of Link Stability Based on Zone Master for Wireless Networks (무선네트워크에서 존 마스터 기반의 링크 안정성 해석)

  • Wen, Zheng-Zhu;Kim, Jeong-Ho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.3
    • /
    • pp.73-78
    • /
    • 2019
  • Due to frequent topology changes in wireless networks, inter-node link disconnection and path re-establishment occur, causing problems such as overloading control messages in the network. In this paper, to solve the problems such as link disconnection and control message overload, we perform path setup in three steps of the neighbor node discovery process, the route discovery process, and the route management process in the wireless network environment. The link stability value is calculated using the information of the routing table. Then, when the zone master monitors the calculated link value and becomes less than the threshold value, it predicts the link disconnection and performs the path reset to the corresponding transmitting and receiving node. The proposed scheme shows a performance improvement over the existing OLSR protocol in terms of data throughput, average path setup time, and data throughput depending on the speed of the mobile node as the number of mobile nodes changes.

A Solution for Congestion and Performance Enhancement using Dynamic Packet Bursting in Mobile Ad Hoc Networks (모바일 애드 혹 네트워크에서 패킷 버스팅을 이용한 혼잡 해결 및 성능향상 기법)

  • Kim, Young-Duk;Yang, Yeon-Mo;Lee, Dong-Ha
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.5
    • /
    • pp.409-414
    • /
    • 2008
  • In mobile ad hoc networks, most of on demand routing protocols such as DSR and AODV do not deal with traffic load during the route discovery procedure. To solve the congestion and achieve load balancing, many protocols have been proposed. However, the existing load balancing schemes has only considered avoiding the congested route in the route discovery procedure or finding an alternative route path during a communication session. To mitigate this problem, we have proposed a new scheme which considers the packet bursting mechanism in congested nodes. The proposed packet bursting scheme, which is originally introduced in IEEE 802.11e QoS specification, is to transmit multiple packets right after channel acquisition. Thus, congested nodes can forward buffered packets promptly and minimize bottleneck situation. Each node begins to transmit packets in normal mode whenever its congested status is dissolved. We also propose two threshold values to define exact overloaded status adaptively; one is interface queue length and the other is buffer occupancy time. Through an experimental simulation study, we have compared and contrasted our protocol with normal on demand routing protocols and showed that the proposed scheme is more efficient and effective especially when network traffic is heavily loaded.

THERA: Two-level Hierarchical Hybrid Road-Aware Routing for Vehicular Networks

  • Abbas, Muhammad Tahir;SONG, Wang-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3369-3385
    • /
    • 2019
  • There are various research challenges in vehicular ad hoc networks (VANETs) that need to be focused until an extensive deployment of it becomes conceivable. Design and development of a scalable routing algorithm for VANETs is one of the critical issue due to frequent path disruptions caused by the vehicle's mobility. This study aims to provide a novel road-aware routing protocol for vehicular networks named as Two-level hierarchical Hybrid Road-Aware (THERA) routing for vehicular ad hoc networks. The proposed protocol is designed explicitly for inter-vehicle communication. In THERA, roads are distributed into non-overlapping road segments to reduce the routing overhead. Unlike other protocols, discovery process does not flood the network with packet broadcasts. Instead, THERA uses the concept of Gateway Vehicles (GV) for the discovery process. In addition, a route between source and destination is flexible to changing topology, as THERA only requires road segment ID and destination ID for the communication. Furthermore, Road-Aware routing reduces the traffic congestion, bypasses the single point of failure, and facilitates the network management. Finally yet importantly, this paper also proposes a probabilistical model to estimate a path duration for each road segment using the highway mobility model. The flexibility of the proposed protocol is evaluated by performing extensive simulations in NS3. We have used SUMO simulator to generate real time vehicular traffic on the roads of Gangnam, South Korea. Comparative analysis of the results confirm that routing overhead for maintaining the network topology is smaller than few previously proposed routing algorithms.

Trust based Secure Reliable Route Discovery in Wireless Mesh Networks

  • Navmani, TM;Yogesh, P
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3386-3411
    • /
    • 2019
  • Secured and reliable routing is a crucial factor for improving the performance of Wireless Mesh Networks (WMN) since these networks are susceptible to many types of attacks. The existing assumption about the internal nodes in wireless mesh networks is that they cooperate well during the forwarding of packets all the time. However, it is not always true due to the presence of malicious and mistrustful nodes. Hence, it is essential to establish a secure, reliable and stable route between a source node and a destination node in WMN. In this paper, a trust based secure routing algorithm is proposed for enhancing security and reliability of WMN, which contains cross layer and subject logic based reliable reputation scheme with security tag model for providing effective secured routing. This model uses only the trusted nodes with the forwarding reliability of data transmission and it isolates the malicious nodes from the providing path. Moreover, every node in this model is assigned with a security tag that is used for efficient authentication. Thus, by combining authentication, trust and subject logic, the proposed approach is capable of choosing the trusted nodes effectively to participate in forwarding the packets of trustful peer nodes successfully. The simulation results obtained from this work show that the proposed routing protocol provides optimal network performance in terms of security and packet delivery ratio.