• Title/Summary/Keyword: rotor loss

Search Result 299, Processing Time 0.023 seconds

Mechanical Characteristics of Automobile Brake Pads (자동차 브레이크 패드의 기계적 특성 연구)

  • Shin, Jaeho;Kim, Kyungjin;Kang, Woojong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.3
    • /
    • pp.19-24
    • /
    • 2015
  • Brake pads are a component of disc brake system of automobile and consist of steel backing plates and friction material facing the disk brake rotor. Due to the repeated sliding forces and torque in vehicle braking, friction performance of brake pads are ensured. Futhermore, the brake pad is one of major tuning components in aftermarket, mechanical characteristics of the brake pad are necessary to evaluate for establishing the certification standards of tuning components. This study had performed the five specimen tests for friction coefficients and wear loss rates according to the SAE test specification. Using the instrumented indentation method, yield strength and tensile strength were measured. Friction coefficients, 0.386 - 0.489, and wear loss rates, 1.0% - 3.7% are obtained. The range of yield strength and tensile strength are 21.4 MPa - 105.3 MPa and 39.5 MPa - 176.4 MPa respectively.

Performance Evaluation and Comparison of Conventional 12/8 and Novel 6/5 Switched Reluctance Motors (기존 12/8 및 새로운 6/5 SRM의 성능분석 및 비교)

  • Xu, Zhenyao;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.517-518
    • /
    • 2016
  • In this paper, a novel 6/5 switched reluctance motor (SRM) with segmental rotor is proposed for vehicle cooling fan application. Unlike conventional SRMs, the proposed motor adopts hybrid stator poles and segmental rotor structures, thereby making the motor operate in short flux paths and parts of the flux paths magnetically isolated between the phases. Therefore, compared with conventional SRMs, the proposed structure could improve the output torque density and reduce the core loss, thereby improving the electric utilization of the motor. To verify the proposed structure, the performance of the proposed structure is evaluated. Meanwhile, a conventional 12/8 SRM which has been used for vehicle cooling fan application is also evaluated. Finally, the effectiveness of the proposed SRM is demonstrated by the simulation and experimental results.

  • PDF

A Research on Iron Loss of IPMSM with a Fractional Number of Slots Per Pole (분수슬롯 권선 타입의 매입형 영구자석 동기 전동기의 철손 분석)

  • Seo, Jang-Ho;Yi, Kyung-Pyo;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.50-52
    • /
    • 2008
  • In this paper, we investigated the iron losses in the rotor core of interior permanent magnet synchronous machine (IPMSM), which have distributed armature windings. From the analysis results, we can conclude that iron losses of rotor are definitely large at load condition if the number of slots per pole is fractional. Since the slot-pole combination may induce excessive heating, particular care should be necessary in design of PMSM for a high power rating application such as electric vehicles.

  • PDF

Roughness effect on performance of a multistage axial compressor (다단 축류압축기의 표면조도가 성능에 미치는 영향)

  • Han, Kyung-ho;Kang, Young-seok;Kang, Shin-hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.264-270
    • /
    • 2002
  • This paper presents roughness effects on flow characteristics and efficiency of multi-stage axial compressor using numerical simulation. which is carried out with a commercially available software, CFX-TASCflow. In this paper, the third of four stages of GE low pressure compressor is considered including me stator and rue rotor. Mixing-plane approach is adopted to model the interface between the stator and the rotor: it is appropriate for steady state simulation. First, a flat plate simulation was performed to validate how exact the numerical simulation predicts the roughness effect for smooth and rough walls. Then GE compressor model was calculated about at each roughness height. Concluding, very small roughness height largely affects the performance of compressor and the increasing rate of loss decrease as roughness height increase.

  • PDF

Performance Comparison of PM Synchronous and PM Vernier Machines Based on Equal Output Power per Unit Volume

  • Jang, Dae-Kyu;Chang, Jung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.150-156
    • /
    • 2016
  • This paper compares the performances of permanent-magnet synchronous (PMS) and permanent-magnet vernier (PMV) machines for low-speed and high-torque applications. For comparison with the PMS machines, we consider two types of the PMV machine. The first one has surface-mounted permanent magnets (PMs) on the rotor and the other has PMs inserted on both sides of the stator and rotor. The PMS and PMV machines are designed to meet the condition of equal output power per unit volume. We analyze the magnetic fields of the machines using a two-dimensional finite element analysis (FEA). We then compare their performances in terms of the generated torque characteristics, power factor, loss, and efficiency.

Calculation of Resistance of Squirrel Cage Induction Motor End Ring using 3-D Finite Element Method (3차원 유한요소법을 이용한 농형유도전동기 단락환의 저항계산)

  • 박민우;이복용;이기석
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.2
    • /
    • pp.71-77
    • /
    • 1996
  • The end-ring may contribute a significant influence to the performance of machine. The induced currents flow through the bars of a cage rotor and complete their closed paths by passing around the end-ring. This dissertation is to describe a method for calculating end-ring resistance of squirrel cage rotor, based on 3-D finite element method(A-$\Phi$). The resistance under consideration of skin effect is calculated by using Joule's loss equation.

  • PDF

A Mathematical Model Simulating A Grain-Straw Separation Process in an Axial-Flow Separator

  • Lee, Seung-Kyu-;Kim, Sung-Tae-;Park, Kyu-hong-
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.676-685
    • /
    • 1993
  • A mathematical model was developed to quantify the separation process of threshed grain-straw mixtures. It was made to predict the separation loss from a separation unit consisted of stationary crimped sieve with rotating inner rotor. Experiments were performed to prove the mathematical model by changing various levels of pertinent variables for rice. Good Agreement between the simulated results and observed data under the various test conditions, such as inclination angle of the separator, vane pitch, rotor speed, MOG/G ratio, feed rate, and crop variety and moisture content, were confirmed.

  • PDF

A Method to Design the Rotor of Synchronous Reluctance Motors for Maximum Torque and Power Factor (동기형 릴럭턴스 전동기의 토크와 역률 최대화를 위한 회전자 설계 기법)

  • Kim, Won-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.93-100
    • /
    • 2013
  • This paper propose a method to design the rotor of synchronous reluctance motors(SynRM) for maximum torque and power factor by using DOE(design of experiment) with the design variables which are parameters of barriers and segments. In this process, there are problems that require lots of simulation time and number of simulations when calculating the both torque and power factor using the finite element method in order to find load angle, core loss per speed. In order to improve this problem, we calculate only value of flux linkage by finite element method, and can decrease analysis and the number of analysis time by applying steady state expression of the power factor and torque. Finally, in order to verify the characteristics of optimal model, we make prototype motor and compare with the conventional SynRM. In this experiment, we use the DC current decay test for calculating d-and q-axis inductance.

Stepping motor controlling apparatus

  • Le, Ngoc Quy;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1858-1862
    • /
    • 2005
  • Stepping motor normally operates without feedback and may loss the synchronization. This problem can be prevented by using positional feedback. This paper introduces one method for closed loop control of stepping motor and a method for combining full-step control and micro-step control. This combination controlling apparatus can perform position control with high accuracy in a high speed, so that it will not suffer from vibration (or hunting) problem when stopping motor. Controlling apparatus contains a position counter block for detecting rotor position of stepping motor, a driving block for supplying current to windings of stepping motor, a control block for comparing output signal of position counter block with command position (desired position) and outputting current command signal based on deviation between current position and command position of rotor. To output current command signal, the control block refers to a sine wave data table. This table contains value of duty cycle of Pulse Width Modulation signal. As the second object of this paper, the process of building this data table is also presented.

  • PDF

Maximum Efficiency Control of an Induction Motor Drive by Parameter Adaptive Compensation (파라미터 적응보상에 의한 유도전동기의 최대효율 제어기법)

  • Shon, Jin-Geun;Choi, Myung-Gyu;Park, Jong-Chan;Na, Chae-Dong;Lee, Sung-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.162-166
    • /
    • 2000
  • In this paper, a maximum efficiency control technique of real-time processing in which parameter variation is compensated in vector control of an induction motors(I.M.) is proposed. Based on equivalent model of I.M., a loss minimization factor(LMF) with the variations of speed is derived. To solve problem of inaccuracy of LMF curves due to machine parameter variation, rotor resistance estimation is performed by using instantaneous reactive power. The estimated rotor resistance values are applied to the maximum efficiency control with a LMF.

  • PDF