• Title/Summary/Keyword: rotational slide

Search Result 6, Processing Time 0.017 seconds

Case study of landslide types in Korea (우리나라 산사태의 형태분류에 따른 사례)

  • 김원영;김경수;채병곤;조용찬
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.18-35
    • /
    • 2000
  • The most dominant type of landslide in Korea is debris flows which mostly take place along mountain slopes during the rainy season, July to August. The landslides have been reported to begin activation when rainfall is more than 200mm within 2days. The debris flows are usually followed by translational slips which occur upper part of mountain slopes and they transit to debris flow as getting down to the valleys. Lithology, location, slope inclination, grain size distribution of soil, permeability, dry density and porosity have been proved as triggering factor causing translational slides. The triggering data taken from mapping are statistically analysed to get landslide potential quantitatively. Rock mass creeps mostly occur on well bedded sedimentary rocks in Kyeongsang Basin. Although the displacement of rock mass creep is relatively small about 1m, the creep can cause severe hazards due to relatively large volume of the involved rock mass. Examples are rock mass creep occurred in the mouth of Hwangryongsan Tunnel, in Chilgok and in Sachon in 1999. Although the direct factor of the creeps are due to slope cutting at the foot area, more attention is required A rotational slide occurring within thick soil formation or weathered rock is also closely related to bottom part of slope cutting. It is propagated circular or semi-circular type. Especially in korea, the rotational slide may be frequently occurred in Tertiary tuff area. Because they are mainly composed of volcanic ash and pyroclastic materials, well developed joints and high degree of swelling and absorption can easily cause the slide. The landslide among the Pohang-Guryongpo national road is belong to this type of slide.

  • PDF

Feeding Characteristics of Ball Guide in High Speed Spindle's Bearing Preload Units (고속 주축 베어링용 예압장치의 볼 가이드 이송특성)

  • Lee, Chan-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.685-691
    • /
    • 2011
  • The Bearing preload units are used for stable rotational movements of high speed spindles. The feeding mechanism of the preload unit is important to prevent overheat of bearings and to keep constant bearing load under thermal deformation of spindle unit. In this study, ball slide guide and ball bush as feeding mechanism of preload unit are selected. The maximum static friction force, radial stiffness and damping ratio of ball slide guide with ball load, ball number and ball size are widely investigated. In conclusion, the surface of ball slide guide must be heat treated to reduce static friction force. The number and size of ball are increased to control sensitive bearing preload force.

Stability assessment of soil slopes in three dimensions: The effect of the width of failure and of tension crack

  • Pantelidis, Lysandros;Gravanis, Elias;Gkotsis, Konstantinos-Paraskevas
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.319-328
    • /
    • 2020
  • This paper investigates the effect of the width of failure and tension crack (TC) on the stability of cohesive-frictional soil slopes in three dimensions. Working analytically, the slip surface and the tension crack are considered to have spheroid and cylindrical shape respectively, although the case of tension crack having planar, vertical surface is also discussed; the latter was found to return higher safety factor values. Because at the initiation of a purely rotational slide along a spheroid surface no shear forces develop inside the failure mass, the rigid body concept is conveniently used; in this respect, the validity of the rigid body concept is discussed, whilst it is supported by comparison examples. Stability tables are given for fully drained and fully saturated slopes without TC, with non-filled TC as well as with fully-filled TC. Among the main findings is that, the width of failure corresponding to the minimum safety factor value is not always infinite, but it is affected by the triggering factor for failure (e.g., water acting as pore pressures and/or as hydrostatic force in the TC). More specifically, it was found that, when a slope is near its limit equilibrium and under the influence of a triggering factor, the minimum safety factor value corresponds to a near spherical failure mechanism, even if the triggering factor (e.g., pore-water pressures) acts uniformly along the third dimension. Moreover, it was found that, the effect of tension crack is much greater when the stability of slopes is studied in three dimensions; indeed, safety factor values comparable to the 2D case are obtained.

Parametric Studies of Slope stability Analysis by 3D FEM Using Strength Reduction Method (강도감소법에 의한 3차원 사면안정해석에 대한 매개변수 연구)

  • Kim, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.25-32
    • /
    • 2016
  • The two-dimensional (2D) analysis is widely used in geotechnical engineering for slope stability analysis assuming a plane-strain condition. It is implicitly assumed that the slip surface is infinitely wide, and thus three-dimensional (3D) end effects are negligible because of the infinite width of the slide mass. The majority of work on this subject suggests that the 2D factor of safety is conservative (i.e. lower than the 'true' 3D factor of safety). Recently, the 3D finite element method (FEM) became more attractive due to the progress of computational tools including the computer hardware and software. This paper presents the numerical analyses on rotational mode and translational mode slopes using the 2D and 3D FEM as well as 2D limit equilibrium methods (LEM). The results of the parametric study on the slope stability due to mesh size, dilatency angle, boundary conditions, stress history and model dimensions change are analysed. The analysis showed that the factor of safety in 3D analysis is always higher than that in the 2D analysis and the discrepancy of the slope width in W direction on the factor of safety is ignored if the roller type of W direction conditions is applied.

An Automatic Transfer System of the Path for an Unmanned Machine in the Greenhouse (온실내 무인작업기를 위한 경로 자동변환 시스템 개발)

  • 김창수;이대원;이승기
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.237-243
    • /
    • 2000
  • Agricultural machine is currently operated by man power in the greenhouse, which is oppressively hot and humid, and is for a farmer not to work in comfortable circumstances. In the future, agricultural machine will not have to operate by man power, but it will need do by unmanned power. In order to put into the automatic and unmanned operation of agricultural machine, this system was designed and built to move through the fixed path in the greenhouse. This system was composed of guiders(wires), a limit switch, an operating equipment, its software for automatizing a machine in the greenhouse. The guider was connected between the wall pillars, and the equipment was able to slide over the fixed path made of the guider, by rectilinear and rotational motion. A micro mouse was developed with a stepping motor to calculate on the success rate of its operation with the system As might be expected, this system with the micro mouse was moved the moved the paths with a success rate of 100% on the flat plane surface in our laboratory. However, on the sand plane or the other materials plane, the success rate was not better than 80%. If the micro mouse were well operated, the success rate was would be 100%. Based on the results of this research, this system would be expected to operate well on the path made of a simple wire.

  • PDF

A Study on Yongin -Ansung Landslides in 1991 (1991년 용인 -안성 지역 산사태 연구)

  • Park, Yong-Won;Kim, Gam-Rae;Yeo, Un-Gwang
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.103-118
    • /
    • 1993
  • This paper presents the results of investigation of the rainstorm induced landslides occurred in the districts of Yongin, Ansung and Osan on July 21st 1991. More than two thousand and sirs hundred landsilides took place during or after a 3-t hours heavy rainfall and about 466 ha mountain slopes were affected by slope failures. The result of study on the effect of-iainfall on landslides shows that landslides began to occur where daily and maximum hourly rainfall exceeded 114mm and 40mm respectively, and all districts (myun) where maximum hourly rainfall exceeded 62mm were affected by landslides. The morphological study on landslides on Talbongsan area reveals that, by Walker's classi fication using D IL(failure depth ratio), 50% of the landslides were classified as flows, 20% of them as translational slides, and 30% were between flow and slide and there were few rotational slides. Over 90% of landslides tookplace at slopes of 20$^{\circ}$-40$^{\circ}$ in slope and 50m or shorter in length And more than 50% of the crown of slides locates at higher than 0.7 times of slope hight. Any differences between the kinds of tree in landslide resisting effects are shown in this case.

  • PDF