• Title/Summary/Keyword: rotational relaxation

Search Result 46, Processing Time 0.145 seconds

An NMR Study on Molecular Motions of $\alpha$,2,6-Trichlorotoluene in Solution State

  • Ahn, Sang-Doo;Lee, Jo-Woong
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.553-559
    • /
    • 1994
  • Dynamics of $CH_2CI$ group in ${\alpha},2,6$-trichlorotoluene dissolved in $CDCl_3$ was studied by observing various relaxation modes for $^{13}C$ under proton undecoupled condition. Partially relaxed $^{13}C$ spectra were obtained at $34^{\circ}C$ as a function of evolution time after applying various designed pulse sequences to this $AX_2$ spin system. It was found that nonlinear regression analysis of the relaxation data for these magnetization modes could provide the information about dipolar and spin-rotational auto-correlation and cross-correlation spectral densities for fluctuation of the $^{13}C-^1H$ internuclear vector in $CH_2Cl$ group. The results show that the effect of cross-correlation is comparable in magnitude to that of auto-correlation and the relaxation in this spin system is dominated by dipolar mechanism rather than spin-rotational one. From the resulting spectral density data we could calculate the bond angle ${\angle}HCH\;(105.1$^{\circ}$) and elements of the rotational diffusion tensor for $CH_2Cl$ group.

NMR Relaxation Study of Segmental Motions in Polymer-n-Alkanes

  • Chung Jeong Yong;Lee Jo Woong;Park Hyungsuk;Chang Taihyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.296-306
    • /
    • 1992
  • $^{13}C$ spin-lattice relaxation times were measured for n-alkanes of moderate chain length, ranging from n-octane to n-dodecane, under the condition of proton broad-band decoupling within the temperature range of 248-318 K in order to gain some insight into basic features of segmental motions occurring in long chain ploymeric molecules. The NOE data showed that except for methyl carbon-13 dipole-dipole interactions between $^{13}C$ and directly bonded $^1H$ provide the major relaxation pathway, and we have analyzed the observed $T_1data$ on the basis of the internal rotational diffusion theory by Wallach and the conformational jump theory by London and Avitabile. The results show that the internal rotational diffusion constants about C-C bonds in the alkane backbone are all within the range of $10^9\;-10^10\;sec^{-1}$ in magnitude while the mean lifetimes for rotational isomers are all of the order of $10^{-11}\;-10^{-10}$ sec. Analysis by the L-A theory predicts that activation energies for conformational interconversion between gauche and trans form gradually increase as we move from the chain end toward the central C-C bond and they are within the range of 2-4 kcal/mol for all the compounds investigated.

$^{13}$C NMR Relaxation Study of Internal Rotation of Methyl Groups-Spin-Rotational Relaxation of methyl Carbon-13 in 2-bromo-p-xylene, 2,5-dimethylanisole and 2,5-dimethylaniline

  • Lee, Jo-Woong;Cho, Chull-Hyung;Park, Seong-Kyu;Jo, Byung-Wook;Ro, Bong-Oh;Choe, Sung-Hyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.73-79
    • /
    • 1987
  • In this work we have investigated temperature dependence of spin-rotational relaxation rate, $(1/T_1)_{SR}$, of methyl carbon-13's in 2-bromo-p-xylene, 2,5-dimethylaniline, and 2,5-dimethylanisole and have found that temperature behaviors of two methyl carbon-13's in ortho- and meta-position, respectively, are substantially different. It has been confirmed that the modified Burke-Chan model proposed by Park et al. can nicely explain different temperature dependence of $(1/T_1)_{SR}$ for these two methyl carbon-13's while the original Burke-Chan model fails to do so.

Detailed Analysis of Thrust Plume and Satellite Base Region Interaction (인공위성 플룸과 기저면의 상호 작용에 관한 해석)

  • Kim, Jae-Gang;Kwon, Oh-Joon;Lee, Kyun-Ho;Kim, Su-Kyum;Yu, Myoung-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1056-1062
    • /
    • 2008
  • The interaction between thrust plume and satellite base region was investigated by using direct simulate Monte-Carlo calculations. For the accurate simulation of N2 and H2 collisions and rotation-translation transition, a variable soft-sphere model and a recent rotational relaxation model of N2 and H2 were used. For the investigation of the interaction between thrust plume and base region, the number density distribution for each species, translational and rotational temperature distributions, heat flux, and pressure were examined by direct simulation of Monte-Carlo calculations. It was found that most of the surface properties are affected by H2 collisions and a strong non-equilibrium state is observed at the base region. It was demonstrated that an accurate model is needed to simulate H2 collisions and the rotation-translation transition. The results by the present calculation are more accurate than previous direct simulation Monte-Carlo calculations because more accurate rotational relaxation models were used in simulating the inelastic collisions.

Nuclear Magnetic Relaxation of Molecular Reorientation in Liquid

  • Kook Joe Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.110-112
    • /
    • 1993
  • Molecular reorientation of oblate symmetric top molecules in the presence of internal rotation is investigated and an analytic expression for the overall reorientational correlation time is obtained. The overall reorientation of the symmetric top is treated by the anisotropic rotational diffusion and the internal rotation is analyzed by employing a model which describes jumps between several discrete states with different lifetimes. The lifetimes thus obtained can be compared with the internal angular momentum correlation time which appears when the internal rotation is treated by a modified extended rotational diffusion model.

Debye Screening Effect on Scaling Behavior of Longest Relaxation Time of Biological Polyelectrolyte Chain

  • Lee, Jeong Yong;Sung, Jung Mun;Yoon, Kyu;Chun, Myung-Suk;Jung, Hyun Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3703-3708
    • /
    • 2013
  • The scaling relationship of the longest relaxation time of a single chain of semiflexible biological polyelectrolyte has been investigated by performing well-established coarse-grained Brownian dynamics simulations. Two kinds of longest relaxation times were estimated from time-sequences of chain trajectories, and their behaviors were interpreted by applying the scaling law for different molecular weights of polyelectrolyte and Debye lengths. The scaling exponents for longest stress relaxation and rotational relaxation are found in the ranges of 1.67-1.79 and 1.65-1.81, respectively, depending on the physicochemical interaction of electrostatic Debye screening. The scaling exponent increases with decreasing screening effect, which is a special feature of polyelectrolytes differing from neutral polymers. It revealed that the weak screening allows a polyelectrolyte chain to follow the behavior in good solvent due to the strong electrostatic repulsion between beads.

A Theoretical Representation of Relaxation Processes in Complex Spin System Using Liouville Space Method

  • Kyunglae Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.21-29
    • /
    • 1993
  • For the study of relaxation processes in complex spin system, a general master equation, which can be used to simulate a vast range of pulse experiments, has been formulated using the Liouville representation of quantum mechanics. The state of a nonequilibrium spin system in magnetic field is described by a density vector in Liouville space and the time evolution of the system is followed by the application of a linear master operator to the density vector in this Liouville space. In this master equation the nuclear spin relaxation due to intramolecular dipolar interaction or randomly fluctuating field interaction is explicitly implemented as a relaxation supermatrix for a strong coupled two-spin (1/2) system. The whole dynamic information inherent in the spin system is thus contained in the density vector and the master operator. The radiofrequency pulses are applied in the same space by corresponding unitary rotational supertransformations of the density vector. If the resulting FID is analytically Fourier transformed, it is possible to represent the final nonstationary spectrum using a frequency dependent spectral vector and intensity determining shape vector. The overall algorithm including relaxation interactions is then translated into an ANSIFORTRAN computer program, which can simulate a variety of two dimensional spectra. Furthermore a new strategy is tested by simulation of multiple quantum signals to differentiate the two relaxation interaction types.

The Effect of Fascia Relaxation and Mobilization of the Hyoid on the Range of Motion, Pain, and Deviation of the Hyoid in Neck Pain

  • Lee, Byung-jin;Yoon, Tae-lim
    • Physical Therapy Korea
    • /
    • v.27 no.1
    • /
    • pp.70-77
    • /
    • 2020
  • Background: Neck pain can be caused by any structure in the neck, such as intervertebral discs, ligaments, muscles, facet joints, dura mater, and nerve roots. The hyoid bone is a structure that is also related to head and neck posture, neck movement and pain, but there are no studies on hyoid deviation, neck pain, and range of motion (ROM). Objects: The purpose of this study was to investigate the effect of fascia relaxation and mobilization of the hyoid bone on the ROM, pain, and lateral deviation of the hyoid bone. Methods: Twenty-five patients with neck pain identified by the lateral motion test (10 males [35.13 ± 7.67 years, 172.69 ± 3.90 cm, 78.77 ± 6.96 kg] and 15 females [35.13 ± 10.05 years, 161.11 ± 4.09 cm, 52.59 ± 2.98 kg]) was chosen randomly. Baseline values for pain, neck ROM, and lateral deviation in the hyoid bone were recorded using a visual analogue scale (VAS), goniometer, and tape measure. Then, each patient was treated with hyoid fascia relaxation and mobilization, and all results were recorded after intervention. Comparison of the results before and after intervention was analyzed using paird t-test (p < 0.05). Results: Right rotation, extension, VAS, and rotational asymmetry statistically significant differences (p < 0.05). Right rotation and extension increased ROM, rotational asymmetry ratio and VAS decreased. However, there was no significant difference in flexion, left rotation, center point (p > 0.05). Conclusion: Fascia relaxation and hyoid mobilization could improve the ROM of cervical extension, asymmetry of the cervical rotation and neck pain.

Viscoelastic behavior of aqueous surfactant micellar solutions

  • Toshiyuki Shikata;Mamoru Shiokawa;Shyuji Itatani;Imai, Shin-ichiro
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.129-138
    • /
    • 2002
  • A cationic surfactant, cetyltrimethylammonium $\rho$-toluenesufonate (CTA$\rho$TS), forms long threadlike micelles in aqueous solution. The threadlike micelles make concentrated entanglement networks, so that the solution shows pronounced viscoelastic behavior as concentrated polymer systems do. However, a mechanism for a process responsible for the longest relaxation time of the threadlike micellar system is different from that of semi-dilute to concentrated polymer systems. The threadlike micellar system exhibits unique viscoelasticity described by a Maxwell model. The longest relaxation time of the threadlike micellar system is not a function of the concentration of CTA$\rho$TS, but changes with that of $\rho$-toluenesufonate ($\rho$$TS^{-}$) ions in the bulk aqueous phase supplied by adding sodium $\rho$-toluenesulfonate (NapTS). The rates of molecular motions in the threadlike micelles are not influenced by the concentration of $\rho$$TS^{-}$ anions, therefore, molecular motions in the threadlike micelles (micro-dynamics) are independent of the longest relaxation mechanism (macro-dynamics). A nonionic surfactant, oleyldimethylamineoxide (ODAO), forms long threadlike micelles in aqueous solution without any additives. The aqueous threadlike micellar system of ODAO also shows Maxwell type viscoelastic behavior. However, the relaxation mechanism for the longest relaxation process in the system should be different from that in the threadlike micellar systems of CTA$\rho$TS, since the system of ODAO does not contain additive anions. Because increase in the average degree of protonation of head groups of ODAO molecules in micelles due to adding hydrogen bromide causes the relaxation time remarkably longer, changes in micro-structure and micro-dynamics in the threadlike micelle are closely related to macro-dynamics in contrast with the threadlike micellar system of CTA$\rho$TS.

Simultaneous Vibrational and Rotational Transitions in HF + Ar (HF와 Ar 衝突中의 振動-回轉遷移)

  • Hyung Kyu Shin
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.12-24
    • /
    • 1974
  • The importance of rotational transitions in the vibrational deexcitation of HF(1${\rightarrow}$0) in HF+Ar collisions has been investigated by a semiclassical three-dimensional approach. Because of the inclusion of rotational transitions, this study gives vibrational transition probabilities which are very large compared to results of conventional vibration-to-translation energy transfer theories. Currently available experimental studies suggest that this effect is important and has to be included in rigorous calculations.

  • PDF