• Title/Summary/Keyword: rotational mode shape

Search Result 36, Processing Time 0.024 seconds

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

Performance of rotational mode based indices in identification of added mass in beams

  • Rajendrana, Prakash;Srinivasan, Sivakumar M.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.711-723
    • /
    • 2015
  • This study investigates the identification of added mass and its location in the glass fiber reinforced polymer (GFRP) beam structures. The main emphasis of this paper is to ascertain the importance of inclusion of rotational degrees of freedom (dofs) in the introduction of added mass or damage identification. Two identification indices that include the rotational dofs have been introduced in this paper: the modal force index (MFI) and the modal rotational curvature index (MRCI). The MFI amplifies damage signature using undamaged numerical stiffness matrix which is related to changes in the altered mode shapes from the original mode shapes. The MRCI is obtained by using a higher derivative of rotational mode shapes. Experimental and numerical results are compared with the existing methods leading to a conclusion that the contributions of the rotational modes play a key role in the identification of added mass. The authors believe that the similar results are likely in the case of damage identification also.

Study on the Analysis of Structural Dynamic Characteristics and Modal Test of Unmanned Helicopter Rotor Blades (무인헬리콥터 로터 블레이드의 구조적 진동특성 분석 및 시험에 관한 연구)

  • 정경렬;이종범;한성호;최길봉
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.215-224
    • /
    • 1995
  • In this paper, the three-dimensional finite element model is established to investigate the structural dynamic characteristics of rotor blade using a finite element analysis. Six natural frequencies and mode shapes are calculated by computer simulation. The first three flapping modal frequencies, the first two lead-lag modal frequencies, and the first feathering modal frequency are validated through comparison with the modal test results of the fixed rotor blade. The computer simulation results are found in good agreement with experimentally measured natural frequencies. The important results are obtained as follows: (1) Natural frequencies are changed due to the variation of rotational speed and fiber angle of rotor blade, (2) Weak coupling between flapping mode shape and lead-lag mode shape are detected, (3) Centrifugal force has more effect on flapping modal frequency than lead-lag modal frequency.

  • PDF

A Experimental study on natural frequency measurement of passenger car tire under the load and rotation (하중을 받고 회전하는 승용차 타이어의 고유진동수 측정에 관한 실험적 연구)

  • 김병삼;홍동표;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.601-606
    • /
    • 1993
  • The natural frequency measurement of passenger car tire under the load and rotation are studied. In order to obtain theoretical natural frequency and mode shape, the plane vibration of a tire is modeled to that of circular beam. By using the Tickling method based on Hamilton's principle, theoretical results are determined by considering tension force due to tire inflation pressure, rotational velocity and tangential, radial stiffness. Modal parameters varying the inflation pressure, load, rotational velocity are determined experimentally by using frequency response function method. The results show that experimental conditions are parameter for shifting of natural frequency.

  • PDF

Comparison of the Viscosity of Ceramic Slurries using a Rotational Rheometer and a Vibrational Viscometer (회전형 레오미터와 진동형 점도계를 이용한 세라믹 슬러리의 점도 비교)

  • Ji, Hye;Lim, Hyung Mi;Chang, Young-Wook;Lee, Heesoo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.542-548
    • /
    • 2012
  • The viscosity of a ceramic slurry depends on the slurry concentration, particle shape and size, hydrodynamic interactions, temperature, shear rate, pre-treatment condition and the method of measurement with the selected equipment. Representative ceramic slurries with low to high viscosity levels are selected from colloidal silica, barium titanate slurry and glass frit paste. Rotational rheometers and vibrational viscometers are used to compare the measured viscosity for various ceramic slurries. The rotational rheometer measured the viscosity according to the change of the shear rate or the rotational speed. On the other hand, the vibrational viscometer measured one point of the viscosity in a fixed vibrational mode. The rotational rheometer allows the measurement of the viscosity of a ceramic paste with a viscosity higher than 100,000 cP, while the vibrational viscometer provides an easy and quick method to measure the viscosity without deformation of the ceramic slurry due to the measurement method. It is necessary to select suitable equipment with which to measure the viscosity depending on the purpose of the measurement.

Mode localization and frequency loci veering in a disordered coupled beam system

  • Lu, Z.R.;Liu, J.K.;Huang, M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.493-508
    • /
    • 2006
  • Vibration mode localization and frequency loci veering in disordered coupled beam system are studied in this paper using finite element analysis. Two beams coupled with transverse and rotational springs are examined. Small disorders in the physical parameters such as Young's modulus, mass density or span length of the substructure are introduced in the investigation of the mode localization and frequency loci veering phenomena. The effect of disorder in the elastic support on the mode localization phenomenon is also discussed. It is found that an asymmetric disorder in the weakly coupled system will lead to the occurrence of mode localization and frequency loci phenomena.

An Experimental Study on Shape Oscillation Mode of a Pendant Droplet by an Acoustic Wave (음향 가진을 이용한 매달려 있는 액적의 형상 진동 모드에 관한 실험적 연구)

  • Kang Byung-Ha;Moon Jong-Hoon;Kim Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.523-530
    • /
    • 2006
  • One of the fascinating prospects is the possibility of new hydrodynamics technology on micro-scale system since oscillations of micro-droplets are of practical and scientific importance. It has been widely conceived that the lowest oscillation mode of a pendant droplet is the longitudinal vibration, i.e. periodic elongation and contraction along the longitudinal direction. Nonlinear and forced oscillations of supported viscous droplet were focused in the present study. The droplet has a free contact line with solid plate and inviscid fluid. Natural frequencies of a pendant droplet have been investigated experimentally by imposing the acoustic wave while the frequency is being increased at a fixed amplitude. It is found that a pendant droplet shows the resonant behaviors at each mode similar to the theoretical analysis. The rotation of the droplet about the longitudinal axis is the oscillation mode of the lowest resonance frequency. This rotational mode can be invoked by periodic acoustic forcing and is analogous to the pendulum rotation. It is also found that the natural frequency of a pendant droplet is independent of the drop density and surface tension but inversely proportional to the square root of the droplet size.

A Precision Rotational Device using Piezoelectric Elements and Impact Drive Mechanism (압전소자와 충격구동 메커니즘을 이용한 초정밀 회전장치)

  • Ten, Aleksey-Deson;Ryu, Bong-Gon;Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.49-57
    • /
    • 2010
  • This paper describes the design, construction, and fundamental testing of a precision rotational device that utilizes piezoelectric elements as a source of driving force and impact drive mechanism as a driving principle. A novel device structure is designed and the numerical simulations about the static displacement, stress distribution, and mode shape of the designed structure are performed. A fabricated rotational device has been rotated successfully by applying saw-shaped voltages to the piezoelectric elements. The one-step rotational angle was $0.44{\times}10^{-3}$ rad at the applied voltages of 80V. The angular velocities of the device were revealed to be increased as the driving frequency and voltage were respectively increased and the preload was decreased. The device has a feature that it can be translated as well as rotated. An experimental result shows that the device was translated by ${\pm}4.56{\mu}m$ maximum when the 120V sinusoidal voltages with a phase difference of $180^{\circ}$ were respectively supplied to two piezoelectric elements.

An Experimental Study on the Measurement of Radial Directional Natural Frequency in a Passenger Car Tire Roboting under the Load (하중을 받고 회전하는 승용차 타이어의 반경방향 고규진동수 측정에 관한 실험적 연구)

  • Kim, Byoung-Sam;Hong, Dong-Pyo;Chi, Chang-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.1-13
    • /
    • 1996
  • The measurement of radial directional natural frequency ina passenger car tire rotating under the load is studied. In order to obtain theoretical matural frequency and mode shape, the ploane vibration of a tire is modeled to that of circular beam. By esing the Tieking method based on Hamiltons's principle, theoretical results are determined by considering tension horce due to tire inflation pressure, retational velocity and tangential, radial stiffness. Radial directional modal parameters varying with the inflation pressure, load, rotational velocity are experimentally determined by using frequency response function method. The results show that experimental conditions canbe considered as the parameters which shift the natural frequency.

Damage assessment of a bridge based on mode shapes estimated by responses of passing vehicles

  • Oshima, Yoshinobu;Yamamoto, Kyosuke;Sugiura, Kunitomo
    • Smart Structures and Systems
    • /
    • v.13 no.5
    • /
    • pp.731-753
    • /
    • 2014
  • In this study, an indirect approach is developed for assessing the state of a bridge on the basis of mode shapes estimated by the responses of passing vehicles. Two types of damages, i.e., immobilization of a support and decrease in beam stiffness at the center, are evaluated with varying degrees of road roughness and measurement noise. The assessment theory's feasibility is verified through numerical simulations of interactive vibration between a two-dimensional beam and passing vehicles modeled simply as sprung mass. It is determined that the damage state can be recognized by the estimated mode shapes when the beam incurs severe damage, such as immobilization of rotational support, and the responses contain no noise. However, the developed theory has low robustness against noise. Therefore, numerous measurements are needed for damage identification when the measurement is contaminated with noise.