• 제목/요약/키워드: rotational behavior

검색결과 371건 처리시간 0.02초

Two-level control system of toggle braces having pipe damper and rotational friction damper

  • Ata Abdollahpour;Seyed Mehdi Zahrai
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.739-750
    • /
    • 2023
  • This study examines the two-level behavior of the toggle brace damper within a steel frame having a yielding pipe damper and rotational friction damper. The proposed system has two kinds of fuse for energy dissipation in two stages. In this mechanism, rotational friction damper rather than hinged connection is used in toggle brace system, connected to a pipe damper with a limited gap. In order to create a gap, bolted connection with the slotted hole is used, such that first a specific movement of the rotational friction damper solely is engaged but with an increase in movement, the yielding damper is also involved. The performance of the system is such that at the beginning of loading the rotational friction damper, as the first fuse, absorbs energy and with increasing the input load and further movement of the frame, yielding damper as the second fuse, along with rotational friction damper would dissipate the input energy. The models created by ABAQUS are subjected to cyclic and seismic loading. Considering the results obtained, the flexibility of the hybrid two-level system is more comparable to the conventional toggle brace damper. Moreover, this system sustains longer lateral displacements. The energy dissipation of these two systems is modeled in multi-story frames in SAP2000 software and their performance is analyzed using time-history analysis. According to the results, permanent relocations of the roof in the two-level system, in comparison with toggle brace damper system in 2, 5, and 8-story building frames, in average, decrease by 15, 55, and 37% respectively. This amount in a 5-story building frame under the earthquakes with one-third scale decreases by 64%.

강구조 복앵글 전단 접합부의 구조적 거동에 관한 실험적 연구 (An Experimental Study on the Structural Behavior of Double-Angle Shear Connections in Steel Structures)

  • 이도형;김석중
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.305-312
    • /
    • 1997
  • Shear connections in steel structures should satisfy dual criteria of shear strength and rotational flexibility and ductility. The connection should be strong enough to transfer the shear reaction of the beam, and should have sufficient rotational flexibility and ductility to rotate easily and supply the end rotation demand of the beam. This paper is concerned with the behavior of double-angle shear connections where the parameters are numbers of high strength bolts, bolt pitch, the length of angle leg, and connection method. An experimental investigation of shear connection was conducted by testing 12 beam-to-column joint specimens. Based on experimental and analytical study, the failure modes are developed and proposed design formulas.

  • PDF

Inelastic analysis of RC beam-column subassemblages under various loading histories

  • You, Young-Chan;Yi, Waon-Ho;Lee, Li-Hyung
    • Structural Engineering and Mechanics
    • /
    • 제7권1호
    • /
    • pp.69-80
    • /
    • 1999
  • The purpose of this study is to propose an analytical model for the simulation of the hysteretic behavior of RC (reinforced concrete) beam-column subassemblages under various loading histories. The discrete line element with inelastic rotational springs is adopted to model the different locations of the plastic hinging zone. The hysteresis model can be adopted for a dynamic two-dimensional inelastic analysis of RC frame structures. From the analysis of test results it is found that the stiffness deterioration caused by inelastic loading can be simulated with a function of basic pinching coefficients, ductility ratio and yield strength ratio of members. A new strength degradation coefficient is proposed to simulate the inelastic behavior of members as a function of the transverse steel spacing and section aspect ratio. The energy dissipation capacities calculated using the proposed model show a good agreement with test results within errors of 27%.

수평가이드에 충돌하는 유연매체의 거동에 관한 연구 (Study on the flexible media behavior impacting on the horizontal guide)

  • 지중근;홍성권;장용훈;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.388-391
    • /
    • 2006
  • In the development of sheet-handling machinery, it is important to predict the static and dynamic behavior of the sheets with a high degree of reliability because the sheets are fed and stacked at such a high speed. Flexible media behaves geometric nonlinearity of large displacement and small strain. In this paper, static and dynamic analyses of flexible media are performed by FEM considering geometric nonlinearity. Linear stiffness matrix and geometric nonlinear stiffness matrix based on the Co-rotational(CR) approach are derived and numerical simulations are performed by Updated Newton-Raphson(UNR) method and Newmark integration scheme.

  • PDF

사교에 작용하는 지진하중의 영향 평가 (Evaluation of Seismic Force Effects on Skew Bridges)

  • 박형기
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.113-119
    • /
    • 1998
  • This study is focused on evaluation of the structural behavior of skewed bridge during earthquake. The variation of natural frequencies and the lateral forces at pier shoes by the skewness and the rotational effect about vertical axis of skewed bridge due to seismic activity are analytically evaluated and identified through case studies. For this purpose, the composite steel girder highway bridges are selected as case study models. The seismic analyses by response spectrum method and time history method are performed for the selected models. It has been recognized that the frequency of longitudinal model increased as the skew angle decreased, while the lateral mode frequency showed the opposite trends. When the skew angle decreased, longitudina seismic forces of the bridge at the pier were increased but decreased in transverse direction. And it also has been found that the skewed bridges of the case study models showed the rotational behavior about vertical axis due to motion of San Fernando earthquake at Pacoima Dam.

  • PDF

생분해성 지방족 폴리에스테르(Bionolle)와 폴리에피클로로하이드린 블렌드의 상용성 및 열적 거동에 관한 연구 (Miscibility and Thermal Behavior of Biodegradable Synthetic Aliphatic Polyester (Bionolle) and Poly(epichlorohydrin) Blends)

  • 김진호;최형진;이동주;윤진산;진인주
    • 폴리머
    • /
    • 제24권3호
    • /
    • pp.358-365
    • /
    • 2000
  • Miscibility itnd thermal behavior of blends of synthetic biodegradable aliphatic polyester (Bionolle) with poly(epichlorohydrin) (PECH) were investigated by a differential scanning calorimetry (DSC), a dynamic mechanical thermal analyzer (DMTA) and a rotational rheometer. Observed both single glass transition temperatures from the DSC in agreement with the Fox equation and single T$_{g}$ changes as a function of composition from the DMTA indicate that these blend mixtures are miscible. In addition, the miscibility of this blend system was also observed from the single curve of the Cole-Cole Plot of log G′($\omega$) vs. log C"($\omega$) from the dynamic test using a rotational rheometer. This was further verified from the cryogenically fractured surface of BDP/PECH blends by scanning electron microscopy.

  • PDF

현수교 풍진동에 관한 2D 간단해석 및 변수연구 (Simplified 2D Analysis for Suspension Bridges Subject to Wind Excitation)

  • 김우석;이재하
    • 한국전산구조공학회논문집
    • /
    • 제26권6호
    • /
    • pp.463-470
    • /
    • 2013
  • 본 연구에서는 풍진동에 대한 현수교의 거동을 예측하기 위하여 바닥판의 비틀림강성을 고려하여 Mckenna and Tuama 모델(2001)을 개선한 2D 간단해석 방법을 제안하였다. 기존의 모델은 풍속이 증가할수록, 진동수가 낮아질수록 비정상적인 값을 나타내고, 비틀림모드의 공진현상을 묘사할 수 없었다. 이에 본 연구에서는 비틀림강성을 고려하여 풍속에 따른, 진동수에 따른 비틀림진동을 분석하였다. 해석결과 진동 초기의 수직모드는 점차 비틀림모드로 전이되며 수직모드는 안정적으로 진동하는 것을 확인하였다. 또한 비틀림강성 효과를 고려하여 해석을 수행한 결과 수직모드는 시간이 경과함에 따라 안정화되는 모습을 보이나 비틀림 진폭은 일정시간(약 200초) 이후 나타나기 시작하여 비틀림각을 지속적으로 유지하였으며 맥놀이 주기는 풍속이 증가하면서 점차 감소하였다. 비틀림 강성에 따라 서로 다른 풍하중의 풍속과 진동수에 비틀림모드의 공진현상을 나타내므로 실제 설계에는 반드시 이러한 영향이 고려되어야 할 것이다.

Nonlinear boundary parameter identification of bridges based on temperature-induced strains

  • Wang, Zuo-Cai;Zha, Guo-Peng;Ren, Wei-Xin;Hu, Ke;Yang, Hao
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.563-573
    • /
    • 2018
  • Temperature-induced responses, such as strains and displacements, are related to the boundary conditions. Therefore, it is required to determine the boundary conditions to establish a reliable bridge model for temperature-induced responses analysis. Particularly, bridge bearings usually present nonlinear behavior with an increase in load, and the nonlinear boundary conditions cause significant effect on temperature-induced responses. In this paper, the bridge nonlinear boundary conditions were simulated as bilinear translational or rotational springs, and the boundary parameters of the bilinear springs were identified based on the measured temperature-induced responses. First of all, the temperature-induced responses of a simply support beam with nonlinear translational and rotational springs subjected to various temperature loads were analyzed. The simulated temperature-induced strains and displacements were assumed as measured data. To identify the nonlinear translational and rotational boundary parameters of the bridge, the objective function based on the temperature-induced responses is then created, and the nonlinear boundary parameters were further identified by using the nonlinear least squares optimization algorithm. Then, a beam structure with nonlinear translational and rotational springs was simulated as a numerical example, and the nonlinear boundary parameters were identified based on the proposed method. The numerical results show that the proposed method can effectively identify the parameters of the nonlinear boundary conditions. Finally, the boundary parameters of a real arch bridge were identified based on the measured strain data and the proposed method. Since the bearings of the real bridge do not perform nonlinear behavior, only the linear boundary parameters of the bridge model were identified. Based on the bridge model and the identified boundary conditions, the temperature-induced strains were recalculated to compare with the measured strain data. The recalculated temperature-induced strains are in a good agreement with the real measured data.

면내회전강성도를 갖는 철근콘크리트 쉘요소의 개발 (Development of Reinforced Concrete Shell Element with Drilling Rotational Stiffness)

  • 김태훈;유영화;신현목
    • 콘크리트학회논문집
    • /
    • 제11권6호
    • /
    • pp.47-56
    • /
    • 1999
  • In this paper, a nonlinear finite element procedure is presented for the analysis of reinforced concrete shell structures. The 4-node quadrilateral flat shell finite element with drilling rotational stiffness is developed. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The steel reinforcement is assumed to be in a uniaxial stress state and to be a smeared in a layer. The proposed numerical method for nonlinear analysis of reinforce concrete shells will be verified by comparison with reliable experimental results.

Connections of sleeve joint purlin system

  • Tan, S.H.;Seah, L.K.;Li, Y.
    • Structural Engineering and Mechanics
    • /
    • 제13권1호
    • /
    • pp.1-16
    • /
    • 2002
  • This paper presents the findings of an investigation carried out to determine the most appropriate connections, in terms of rotational stiffness, to use for the optimum design of cold-formed Zed section sleeve joint purlin system. Experiments and parametric studies were conducted to investigate the effects of geometric variables on the behavior of the sleeve-purlin and cleat-purlin connections of the sleeve joint purlin system. The variables considered were purlin size and thickness, sleeve size, thickness, length and bolt position. The test results were used to verify the empirical expressions, developed herein, employed to determine the rotational stiffness of connections. With the predicted connection stiffness, the most suitable sleeve-purlin and cleat-purlin connections can be selected so as to produce an optimum condition for the sleeve joint purlin system.