• Title/Summary/Keyword: rotational DOFs

Search Result 14, Processing Time 0.018 seconds

A Four-node General Shell Element with Drilling DOFs (면내회전자유도를 갖는 4절점 곡면 쉘요소)

  • Chung, Keun-Young;Kim, Jae-Min;Lee, Eun-Haeng
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.37-52
    • /
    • 2012
  • In this study, a new 4-node general shell element with 6 DOFs per node is presented. Drilling rotational degrees of freedom are introduced by the variational principle with an independent rotation field. In formulation of the element, substitute transverse shear strain fields are used to avoid shear locking, while four nonconforming modes are applied in the in-plane displacement fields as a remedy for membrane locking. In addition, a direct modification method for nonconforming modes is employed in the numerical implementation of nonconforming modes to represent constant strain states. A 9-points integration rule is adopted for volume integration in the computation of the element stiffness matrix. With the combined use of these techniques, the developed shell element has no spurious zero energy modes, and can represent a constant strain state. Several numerical tests are carried out to evaluate the performance of the new element developed. The test results show that the behavior of the elements is satisfactory.

Rotating Accuracy Analysis for Spindle with Angular Contact Ball Bearings (각 접촉 볼베어링 스핀들의 회전정밀도 분석)

  • Hwang, Jooho;Kim, Jung-Hwan;Shim, Jongyoup
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.735-739
    • /
    • 2013
  • The error motion of a machine tool spindle directly affects the surface errors of machined parts. Spindle motion errors such as three translational motions and two rotational motions are undesirable. These are usually due to the imperfectness of bearings, stiffness of spindle, assembly errors, and external force or unbalance of rotors. The error motions of the spindle need to be reduced for achieving the desired performance. Therefore, the level of error motion needs to be estimated during the design and assembly process of the spindle. In this study, an estimation method for five degree-of-freedom (5 DOF) error motions for a spindle with an angular contact ball bearing is suggested. To estimate the error motions of the spindle, the waviness of the inner-race of bearings and an external force model were used as input data. The estimation model considers the geometric relationship and force equilibrium of the five DOFs. To calculate the error motions of the spindle, not only the imperfections of the shaft and bearings but also driving elements such as belt pulley and direct driving motor systems are considered.

Analysis of Principle and Performance of a New 4DOF Hybrid Magnetic Bearing

  • Bai, Guochang;Sun, Jinji;Han, Weitao;Ren, Hongliang
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • To satisfy the requirement of magnetically suspended control moment gyroscope (MSCMG) that magnetic bearing can provide torque, a novel 4DOF hybrid magnetic bearing (HMB) with integrated structure was designed. Mathematical models of forces and torques are established by using equivalent magnetic circuit method. The current stiffness, displacement stiffness, tilting current stiffness and angular stiffness of the 4DOF hybrid magnetic bearing are derived by the mathematical models. Equivalent magnetic circuit method and finite element method (FEM) simulation results indicate that the force has a good linear relationship with both displacement and current, and the torque has a good linear relationship with angular displacement and current. The novel 4DOF HMB is capable of achieving control in both two radial translational degrees of freedom (DOF) and also two radial rotational DOFs. The 4DOF HMB is well adapted to MSCMG system, exhibiting advantages in the controllable DOF, light weight and easy to control.

Seismic responses of base-isolated nuclear power plant structures considering spatially varying ground motions

  • Sayed, Mohamed A.;Go, Sunghyuk;Cho, Sung Gook;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.169-188
    • /
    • 2015
  • This study presents the effects of the spatial variation of ground motions in a hard rock site on the seismic responses of a base-isolated nuclear power plant (BI-NPP). Three structural models were studied for the BI-NPP supported by different number of lead rubber bearing (LRB) base isolators with different base mat dimensions. The seismic responses of the BI-NPP were analyzed and investigated under the uniform and spatial varying excitation of El Centro ground motion. In addition, the rotational degrees of freedom (DOFs) of the base mat nodes were taken to consider the flexural behavior of the base mat on the seismic responses under both uniform and spatial varying excitation. Finally, the seismic response results for all the analysis cases of the BI-NPP were investigated in terms of the vibration periods and mode shapes, lateral displacements, and base shear forces. The analysis results indicate that: (1) considering the flexural behavior of the base mat has a negligible effect on the lateral displacements of base isolators regardless of the number of the isolators or the type of excitation used; (2) considering the spatial variation of ground motions has a substantial influence on the lateral displacements of base isolators and the NPP stick model; (3) the ground motion spatial variation effect is more prominent on lateral displacements than base shear forces, particularly with increasing numbers of base isolators and neglecting flexural behavior of the base mat.