• Title/Summary/Keyword: rotation vector

Search Result 247, Processing Time 0.029 seconds

Adaptive Error Concealment Method Using Affine Transform in the Video Decoder (비디오 복호기에서의 어파인 변환을 이용한 적응적 에러은닉 기법)

  • Kim, Dong-Hyung;Kim, Seung-Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.712-719
    • /
    • 2008
  • Temporal error concealment indicates the algorithm that restores the lost video data using temporal correlation between previous frame and current frame with lost data. It can be categorized into the methods of block-based and pixel-based concealment. The proposed method in this paper is for pixel-based temporal error concealment using affine transform. It outperforms especially when the object or background in lost block has geometric transform which can be modeled using affine transform, that is, rotation, magnification, reduction, etc. Furthermore, in order to maintain good performance even though one or more motion vector represents the motion of different objects, we defines a cost function. According to cost from the cost function, the proposed method adopts affine error concealment adaptively. Simulation results show that the proposed method yields better performance up to 1.9 dB than the method embedded in reference software of H.264/AVC.

COMPUTER SIMULATION OF INTRAMOLECULAR HYDROGEN TRANSFER TO CARBONYL OXYGEN BY A MONTE CARLO METHOD: PHOTOREACTIONS VIA REMOTE PROTON TRANSFER IN BENZOYLBENZOATES

  • Hasegawa, Tadashi;Yamazaki, Yuko;Yoshioka, Michikazu
    • Journal of Photoscience
    • /
    • v.4 no.2
    • /
    • pp.61-67
    • /
    • 1997
  • The model based on the idea that the p$_y$-orbital of the carbonyl oxygen is responsible to receiving hydrogen was devised for simulation of intramolecular hydrogen transfer. A Monte Carlo method was applied to free rotation of a molecular chain performed by changing the dihedral angles, and a "hit" was defined as the case when the migrating hydrogen comes within the region defined as the p$_y$-orbital and satisfies all the geometrical requirements for abstraction. A set of parameters was employed for defining the region and the requirements; $\tau$ was defined as the angle formed between O...H vector and its projection on the mean plane of the carbonyl group (- 43$\circ$ < $\tau$ < + 43$\circ$), $\Delta$ as the C=O...H angle (90 -15$\circ$ < $\Delta$ < 90 + 15$\circ$), $\theta$ as the O...H - C angle ( 180 - 80$\circ$< 0 < 180 + 80$\circ$), d as the distance from the center of the lobe of the p$_y$-orbital to hydrogen (0 < d < 1.04 ${\AA}$). The minimum value for the distance between carbonyl oxygen (O$_1$) and the migrating hydrogen (H$_i$) and for that between non-bonded atoms except the pair of O$_1$ and H$_i$ were assumed to be 0.52 ${\AA}$ and 1.54 ${\AA}$, respectively. The apphcation of this model to intramolecular $\beta$-, $\gamma$-, $\delta$-, $\epsilon$-, and $\zeta$-hydrogen abstraction in ketones and $\eta$- and $\theta$- proton transfer in oxoesters gave good results reflecting their photochemical behavior. The model was also used for prediction of photoreactivities of 2-(N,N-dibenzylamino)ethyl 2-, 3- and 4-benzoylbenzoate (1a - c). (1a - c).

  • PDF

3D Reconstruction using vanishing points (소실점을 이용한 3차원 재구성)

  • Kim, Sang-Hoon;Choi, Jong-Soo;Kim, Tae-Eun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.515-520
    • /
    • 2003
  • This paper proposes a calibration method from two images. Camera calibration is necessarily required to obtain 3D Information from 2D images. Previous works to accomplish the camera calibration needed the calibration object or required more than three images to calculate the Kruppa equation, however, we use the geometric constraints of parallelism and orthogonality can be easily presented in man-made scenes. The task of it is to obtain intrinsic and extrinsic camera parameters. The intrinsic parameters are evaluated from vanishing points and then the extrinsic parameters which are consisted of rotation matrix and translation vector of the camera are estimated from corresponding points of two views. From the calibrated parameters, we can recover the projection matrices for each view point. These projection matrices are used to recover 3D information of the scene and can be used to visualize new viewpoints.

An algorithm of the natural view transition in the panoramic image based navigation using Fast Fourier Transform Techniques (파노라마 영상 기반 네비게이션에서 FFT 기술을 이용한 자연스러운 장면 전환 알고리즘)

  • Kim, Dae-Hyun;Choi, Jong-Soo;Kim, Tae-Eun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.561-566
    • /
    • 2003
  • This paper proposes a new algorithm that generates smooth and realistic transition views from one viewpoint to another view point on the panorama based navigation system. The proposed algorithm is composed with two steps. One is prewarping that aligns the viewing direction in two panorama image, the other is bidirectional disparity morphing (BDM) that generates the intermediate scene from the aligned panorama images. For the prewarping, first of all, we compute the phase correlation between two images in order to get the information such as the displacement, rotation, and scale. Then we align the original images using these information. As soon as finishing the prewarping, we compute the block based disparity vectors (DVs) and smooth them using the two occluding patterns. As we apply these DVs to the BDM, we can get the elaborate intermediate scenes. We make an experiment on the proposed algorithm with real panoramic images and we can get the satisfactory results.

VLBI TRF Combination Using GNSS Software

  • Kwak, Younghee;Cho, Jungho
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.315-320
    • /
    • 2013
  • Space geodetic techniques can be used to obtain precise shape and rotation information of the Earth. To achieve this, the representative combination solution of each space geodetic technique has to be produced, and then those solutions need to be combined. In this study, the representative combination solution of very long baseline interferometry (VLBI), which is one of the space geodetic techniques, was produced, and the variations in the position coordinate of each station during 7 years were analyzed. Products from five analysis centers of the International VLBI Service for Geodesy and Astrometry (IVS) were used as the input data, and Bernese 5.0, which is the global navigation satellite system (GNSS) data processing software, was used. The analysis of the coordinate time series for the 43 VLBI stations indicated that the latitude component error was about 15.6 mm, the longitude component error was about 37.7 mm, and the height component error was about 30.9 mm, with respect to the reference frame, International Terrestrial Reference Frame 2008 (ITRF2008). The velocity vector of the 42 stations excluding the YEBES station showed a magnitude difference of 7.3 mm/yr (30.2%) and a direction difference of $13.8^{\circ}$ (3.8%), with respect to ITRF2008. Among these, the 10 stations in Europe showed a magnitude difference of 7.8 mm/yr (30.3%) and a direction difference of $3.7^{\circ}$ (1.0%), while the 14 stations in North America showed a magnitude difference of 2.7 mm/yr (15.8%) and a direction difference of $10.3^{\circ}$ (2.9%).

Closed-form based 3D Localization for Multiple Signal Sources (다중 신호원에 대한 닫힌 형태 기반 3차원 위치 추정)

  • Ko, Yo-han;Bu, Sung-chun;Lee, Chul-soo;Lim, Jae-wook;Chae, Ju-hui
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.78-84
    • /
    • 2022
  • In this paper, we propose a closed-form based 3D localization method in the presence of multiple signal sources. General localization methods such as TDOA, AOA, and FDOA can estimate a location when a single signal source exists. When there are multiple unknown signal sources, there is a limit in estimating the location. The proposed method calculates a cross-correlation vector of signals received by sensors having an array antenna, and estimates TDOA and AOA values from the cross-correlation values. Then, the coordinate transformation is performed using the position of the reference sensor. Then, the coordinate rotation is performed using the estimated AOA value for the transformed coordinates, and then the three-dimensional position of each emitter is estimated. The proposed method verifies its performance through computer simulation.

Usefulness of Non-coplanar Helical Tomotherapy Using Variable Axis Baseplate (Variable Axis Baseplate를 이용한 Non-coplanar 토모테라피의 유용성)

  • Ha, Jin-Sook;Chung, Yoon-Sun;Lee, Ik-Jae;Shin, Dong-Bong;Kim, Jong-Dae;Kim, Sei-Joon;Jeon, Mi-Jin;Cho, Yoon-Jin;Kim, Ki-Kwang;Lee, Seul-Bee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • Purpose: Helical Tomotherapy allows only coplanar beam delivery because it does not allow couch rotation. We investigated a method to introduce non-coplanar beam by tilting a patient's head for Tomotherapy. The aim of this study was to compare intrafractional movement during Tomotherapy between coplanar and non-coplanar patient's setup. Materials and Methods: Helical Tomotherapy was used for treating eight patients with intracranial tumor. The subjects were divided into three groups: one group (coplanar) of 2 patients who lay on S-plate with supine position and wore thermoplastic mask for immobilizing the head, second group (non-coplanar) of 3 patients who lay on S-plate with supine position and whose head was tilted with Variable Axis Baseplate and wore thermoplastic mask, and third group (non-coplanar plus mouthpiece) of 3 patients whose head was tilted and wore a mouthpiece immobilization device and thermoplastic mask. The patients were treated with Tomotherapy after treatment planning with Tomotherapy Planning System. Megavoltage computed tomography (MVCT) was performed before and after treatment, and the intrafractional error was measured with lateral(X), longitudinal(Y), vertical(Z) direction movements and vector ($\sqrt{x^2+y^2+z^2}$) value for assessing overall movement. Results: Intrafractional error was compared among three groups by taking the error of MVCT taken after the treatment. As the correction values (X, Y, Z) between MVCT image taken after treatment and CT-simulation image are close to zero, the patient movement is small. When the mean values of movement of each direction for non-coplanar setup were compared with coplanar setup group, X-axis movement was decreased by 13%, but Y-axis and Z-axis movement were increased by 109% and 88%, respectively. Movements of Y-axis and Z-axis with non-coplanar setup were relatively greater than that of X-axis since a tilted head tended to slip down. The mean of X-axis movement of the group who used a mouthpiece was greater by 9.4% than the group who did not use, but the mean of Y-axis movement was lower by at least 64%, and the mean of Z-axis was lower by at least 67%, and the mean of Z-axis was lower by at least 67%, and the vector was lower by at least 59% with the use of a mouthpiece. Among these 8 patients, one patient whose tumor was located on left frontal lobe and left basal ganglia received reduced radiation dose of 38% in right eye, 23% in left eye, 30% in optic chiasm, 27% in brain stem, and 8% in normal brain with non-coplanar method. Conclusion: Tomotherapy only allows coplanar delivery of IMRT treatment. To complement this shortcoming, Tomotherapy can be used with non-coplanar method by artificially tilting the patient's head and using an oral immobilization instrument to minimize the movement of patient, when intracranial tumor locates near critical organs or has to be treated with high dose radiation.

  • PDF

A Study on Development of Off-Line Path Programming for Footwear Buffing Robot

  • Lho, Tae-Jung;Kang, Dong-Joon;Che, Woo-Seung;Kim, Jung-Young;Kim, Min-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1469-1473
    • /
    • 2004
  • We suggest how to program off-line robot path along shoes' outsole shape in the footwear buffing process by a 5-axis microscribe system like robot arms. This microscribe system developed consists a 5-axis robot link with a turn table, signal processing circuit, PC and an application software program. It makes a robot path on the shoe's upper through the movement of a microscribe with many joints. To do this, first it reads 5-encoder's pulse values while a robot arm points a shoes' outsole shape from the initial status. This system developed calculates the encoder pulse values for the robot arm's rotation and transmits the angle pulse values to the PC through a circuit. Then, Denavit-Hartenberg's(D-H) direct kinematics is used to make the global coordinate from robot joint one. The determinant is obtained with kinematics equation and D-H variable representation. To drive the kinematics equation, we have to set up the standard coordinates first. The many links and the more complicated structure cause the difficult kinematics problem to solve in the geometrical way. Thus, we can solve the robot's kinematics problems efficiently and systematically by Denavit-Hartenberg's representation. Finally, with the coordinate values calculated above, it can draw a buffing gauge-line on the upper. Also, it can program off-line robot path on the shoes' upper. We are subjected to obtaining shoes' outline points, which are 2 outlines coupled with the points and the normal vector based on the points. These data is supposed to be transformed into .dxf file to be used for data of automatic buffing robot. This system developed is simulated by using spline curves coupled with each point from dxf file in Autocad. As a result of applying this system to the buffing robot in the flexible footwear manufacturing system, it can be used effectively to program the path of a real buffing robot.

  • PDF

Regional Projection Histogram Matching and Linear Regression based Video Stabilization for a Moving Vehicle (영역별 수직 투영 히스토그램 매칭 및 선형 회귀모델 기반의 차량 운행 영상의 안정화 기술 개발)

  • Heo, Yu-Jung;Choi, Min-Kook;Lee, Hyun-Gyu;Lee, Sang-Chul
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.798-809
    • /
    • 2014
  • Video stabilization is performed to remove unexpected shaky and irregular motion from a video. It is often used as preprocessing for robust feature tracking and matching in video. Typical video stabilization algorithms are developed to compensate motion from surveillance video or outdoor recordings that are captured by a hand-help camera. However, since the vehicle video contains rapid change of motion and local features, typical video stabilization algorithms are hard to be applied as it is. In this paper, we propose a novel approach to compensate shaky and irregular motion in vehicle video using linear regression model and vertical projection histogram matching. Towards this goal, we perform vertical projection histogram matching at each sub region of an input frame, and then we generate linear regression model to extract vertical translation and rotation parameters with estimated regional vertical movement vector. Multiple binarization with sub-region analysis for generating the linear regression model is effective to typical recording environments where occur rapid change of motion and local features. We demonstrated the effectiveness of our approach on blackbox videos and showed that employing the linear regression model achieved robust estimation of motion parameters and generated stabilized video in full automatic manner.

Sensorless Speed Control of PMSM for Driving Air Compressor with Position Error Compensator (센서리스 위치오차보상기능을 가지고 있는 공기압축기 구동용 영구자석 동기모터의 센서리스 속도제어)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.104-111
    • /
    • 2018
  • The sensorless control of high efficiency air compressors using a permanent magnet type synchronous motor as an oil-free air compressor is quite common. However, due to the nature of the air compressor, it is difficult to install a position sensor. In order to control the permanent magnet type synchronous motor at variable speed, the inclusion of a position sensor to grasp the position of the rotor is essential. Therefore, in order to achieve sensorless control, it is essential to use a permanent magnet type synchronous motor in the compressor. The position estimation method based on the back electromotive force, which is widely used as the sensorless control method, has a limitation in that position errors occur due either to the phase delay caused by the use of a stationary coordinate system or to the estimated back electromotive force in the transient state caused by the use of a synchronous coordinate system. Therefore, in this paper, we propose a method of estimating the position and velocity using a rotation angle tracking observer and reducing the speed ripple through a disturbance observer. An experimental apparatus was constructed using Freescale's MPU and the feasibility of the proposed algorithm was examined. It was confirmed that even if a position error occurs at a certain point in time, the position correction value converges to the actual vector position when the position error value is found.