• Title/Summary/Keyword: rotation speed

Search Result 1,154, Processing Time 0.029 seconds

TIMING RECORDS OF ANCIENT LUNAR ECLIPSES IN CHINA AND LONG-TERM VARIATION OF THE EARTH'S SPIN SPEED

  • RAN YANBEN;ZHANG PEIYU
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.439-440
    • /
    • 1996
  • The Chinese ancient accounts of timing observations of 48 lunar eclipses and the secular variation of the Earth's spin speed are discussed. A series of ${\Delta}$T expressing the secular deceleration of the Earth's rotation was obtained. The average increase rate of length of the day is about 1.5 milliseconds per century.

  • PDF

Effect of Substrate Rotation on the Phase Evolution and Microstructure of 8YSZ Coatings Fabricated by EB-PVD

  • Park, Chanyoung;Choi, Seona;Chae, Jungmin;Kim, Seongwon;Kim, Hyungtae;Oh, Yoon-Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.81-86
    • /
    • 2016
  • The effect of substrate rotation speed on the phase forming behavior and microstructural variation of 8 wt% yttria ($Y_2O_3$) stabilized $ZrO_2$ (8YSZ) coatings as a thermal barrier coating has been investigated. 8YSZ coatings with $100{\sim}200{\mu}m$ thickness were deposited by electron beam-physical vapor deposition onto a super alloy (Ni-Cr-Co-Al) substrate with a bond coating (NiCo-CrAlY). The width of the columnar grains of the 8YSZ coatings increased with increasing substrate rotation speed from 1 to 30 rpm at a substrate temperature range of $900{\sim}950^{\circ}C$. In spite of the different growth behaviors of coatings with different substrate rotation speeds, the phases of each coating were not changed remarkably. Even after post heat treatments with various conditions of the coated specimens fabricated at 20 rpm, only a change of color was noticeable, without any remarkable change in the phase or microstructure.

AE-CORDIC: Angle Encoding based High Speed CORDIC Architecture (AE-CORDIC: 각도 인코딩 기반 고속 CORDIC 구조)

  • Cho Yongkwon;Kwak Seoungho;Lee Moonkey
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.75-81
    • /
    • 2004
  • AE-CORDIC improves the CORDIC operation speed with a rotation direction pre-computation algorithm. Its CORDIC iteration stages consist of non-predictable rotation direction states and predictable rotation stages. The non-predictable stages are replaced with lookup-table which has smaller hardware size than CORDIC iteration stages. The predictable stages can determine rotation direction with the input angle and simple encoder. In this paper, a rotation direction pre-computation algorithm with input angle encoder is proposed. and AE-CORDIC which have optimized Lookup-table is compared with the P-CORDIC algorithm. Hardware size, delay, and SQNR of the AE-CORDIC are verified with Samsung 0.18㎛ technology and Synopsys design compiler when input angle bit length is 16.

A Study on B737NG Aircraft Tail Strike during Takeoff (B737NG 항공기 이륙 중 미부지면접촉에 관한 연구)

  • Noh, Kun-Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.70-75
    • /
    • 2009
  • According to the aviation statistics, tail strike incidents and accidents are cyclic. Although many tail strikes occurred during takeoff, these are less than during landing cases. Many cases are related on human factors. In my opinion it is possible to analyze the causes of takeoff tail strikes to some extent. There are major casual factors of tail strike during takeoff such as; (1) Mis-trimmed horizontal stabilizer (2) premature rotation prior to $V_R$ (3) Excessive pitch up rate during rotation (4) Improper use of the flight director. Among these causes improper use of flight director is excluded in this paper because it is recommended that pilot should use flight director after airborne. So I analyzed the other three causes as following. Firstly, because mis-trimmed stabilizer is related to center of gravity(CG), the relationship between stabilizer and CG is reviewed. Secondly, concerned premature rotation prior to $V_R$ I reviewed the background of rotation speed($V_R$) establishment and analyzed theoretically what speed leads to tail strikes. Thirdly, concerning excessive pitch up rate during rotation I analyzed what excessive pitch up rate can decrease ground clearance while using FDR data.

  • PDF

Kinematic Analysis of Deff Motion in High Bars (철봉운동 Deff 동작의 운동학적 분석)

  • Back, Jin-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2006
  • The purpose of this study is to prove the kinematical characteristics of Deff motion, the high bar performance, in terms of flying phases so that we can provide basic sources for improving gymnastic performance. To do this, we selected and analyzed the performance of two athletes who did Deff motion in the high bar competition of male artistic gymnastic in the 22nd Universiade 2003 Daegu. We drew the conclusions from the kinematical factors that were came out through analyzing three-dimensional cinematography of the athletes' movements, by using a high speed video camera. To make a successful performance, a performer releases the bar at a height of a high bar vertically and at a height of 82cm horizontally, and the flying performance should be made without moving forward, as maintaining the proper balance, in order to rise over 118cm high during the flying phase. When the performer is releasing the bar, an increase of the vertical speed in the center of the body and extension of a knee joint and a hip joint contribute to increasing a flying height. And when the moving body is twisted, leaning to left side is caused by the winding movement of a knee joint, which causes an unstable bar grasp. To grasp the bar stably, just before releasing the performer should gain propulsive force from twisting rotation through increasing the speed of shoulder rotation. And before the peak point, the performer should make sure of a body rotation distance over $164^{\circ}$ so that he or she can do an aerial rotary performance smoothly. When grasping the high bar, the center of the body should be above the bar and the angle of shoulder rotation should be maintained close to $540^{\circ}$ simultaneously. he high point performance(S1) has more speed on an ascending phase and less speed on a descending phase than the low point performance (S2). At the peak point, both the rotation angle of the body and that of the shoulder in high point performance are big as well. In conclusion, it is shown that a performer can make a jump toward the high bar easily with the body straight because the performer can hold the upper part of the body erect early in a descending phase.

Effect of the Impeller Rotation Speed and Inert Gas Flow Rate on Degassing Rate in the A356 Aluminum Melt (임펠러 회전속도와 불활성 가스 유량이 A356 알루미늄 용탕의 탈가스 속도에 미치는 영향)

  • Hyeok-In Kwon;Hoe-Gyung Jeong;Seong-Il Jeong;Ji-Woo Park;Min-Su Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.271-278
    • /
    • 2023
  • In the present study, A356 melt degassing experiments were conducted under various impeller rotation speed and inert gas flow rate conditions to determine changes in the melt temperature, composition and density during a degassing treatment. The melt temperature was found to decrease gradually as the degassing time increased, but a clear correlation between the impeller rotation speed or inert gas flow rate and the melt heat loss could not be confirmed. Regardless of the impeller rotation speed or inert gas flow rate, the Mg and Ti contents in the A356 melt scarcely changed, even after degassing for more than 10 minutes, while Sr contents decreased at the maximum degassing rate of 70 ppm. From a quantitative analysis of the degassing rate under each experimental condition based on the hydrogen concentration in the melt derived from the melt density and the degassing model equation, the inert gas flow rate was found to affect the degassing rate rather than the impeller rotation speed under the degassing operation condition employed in the present study.

Transition Zone Behavioral Characteristics with Increase the Speed of High Speed railroad (고속철도 열차 증속에 따른 접속부 거동특성 분석)

  • Park, Hyo-Sung;Kim, Nak-Seok;Kang, Yun-Suk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1583-1593
    • /
    • 2011
  • As we see the continuation of the increase in the speed of the High Speed railroad worldwide, there is a concern for a possible problem in the connecting transition zone in the railway infrastructure. Honam High Speed railroad's transition zone in the hub for the rotation structures and other supporting structures such as approach slab, sub slab, approach block, etc. Due to its increase in speed of the design speed, and its important role on the driving stability and credibility of the bearing ground performance, we must seek and fine a prevention plan for a cause of differential settlement, as well as the cause of the derailment. In this dissertation, domestic, as well as international design manuals and the applicability of the control standards are studied. Also through the study target, Honam High Speed railroad zone 4-1, we evaluated the connecting componant of the Yeon-Jeong bridge through the eigenvalue and weight transfer of the train when operated at 300km/h, 350km/h, 400km/h, 450km/h, and were able to achieve detailed assessment by checking track behaviors, looking at various components such as the rotation acceleration according to the inversion of the distance length, displace length, displacement and stress distribution. Through these studied, possibility of operating at 400km/h was evaluated based on the condition of the current design basis.

  • PDF

On-line Balancing of a Ultra-high speed Rotor with Residual Unbalance (자기베어링을 이용한 잔류질량불균형이 존재하는 초고속 회전체의 온라인 밸런싱)

  • 송상호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.51-57
    • /
    • 1998
  • In order to minimize vibration problems of rotating machinery rotors have been assembled through balancing machines. Since perfect balancing is impossible, residual unbalances cause serious vibration while the rotor is in high speed region. To minimize unbalance effects of magnetic bearing systems (AMB) during rotation on-line balancing methodology was studied. Unbalances were considered as disturbances of the system. The disturbance observer was used to estimate unbalance force from measurable state and input variables. Balancing inputs computed according to LQR and outputs of the observer were applied to eliminate unbalances during high speed rotation of the AMB. the effectiveness of the on-line balancing was verified through numerical simulations.

  • PDF

The Experimental heat transfer Analysis of a High torque and low speed direct drive rotary motor (고토크 저속 직접 구동식 회전 모터의 열특성 분석)

  • Jung, Moon-Kyung;Lee, Sang-Min;Choi, Moon-Suk;Um, Suk-Kee
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1391-1396
    • /
    • 2009
  • The direct drive motor used in a precision motion rotate at about 1/10 speed and high torque comparing with general rotary motor. Excessive heating of the coils cause an exacerbating the heat problems and reducing the performance of motor. Because the rotation speed of the rotor and surrounding air is low, the motor can not be inefficiently cooled, the thermal analysis in the motor is very important. As the variations of rotation speed and torque, the temperature of several parts is measured and the features of the heat transfer is analyzed and improved.

  • PDF

The Development of Friction Surfacing System and Approach to Process Parameter (마찰표면개질 시스템 개발 및 프로세스 파라메타 상관관계 도출)

  • Cheon, Chang-Geun;Jang, Ung-Seong;No, Jung-Seok;Jeong, Tae-Hwi
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.132-134
    • /
    • 2005
  • The friction surfacing system which has been successfully developed in RIST has both position control and force control by using hydraulic cylinder. In friction surfacing process mechtrode rotation speed(N) and feeding speed($V_{z}$), travelling speed($V_{x,y}$) are of critical importance for the width and thickness of the coating. As a result of DOE with developed system, the main effect of coating thickness is a rotation speed of mechtrode.

  • PDF