• Title/Summary/Keyword: rotation of the earth

Search Result 181, Processing Time 0.028 seconds

Chemical Characterisation of Organic Functional Group Compositions in PM2.5 Collected at Nine Administrative Provinces in Northern Thailand during the Haze Episode in 2013

  • Pongpiachan, Siwatt;Choochuay, Chomsri;Chonchalar, Jittiphan;Kanchai, Panatda;Phonpiboon, Tidarat;Wongsuesat, Sornsawan;Chomkhae, Kanokwan;Kittikoon, Itthipon;Hiranyatrakul, Phoosak;Cao, Junji;Thamrongthanyawong, Sombat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3653-3661
    • /
    • 2013
  • Along with rapid economic growth and enhanced agricultural productivity, particulate matter emissions in the northern cities of Thailand have been increasing for the past two decades. This trend is expected to continue in the coming decade. Emissions of particulate matter have brought about a series of public health concerns, particularly chronic respiratory diseases. It is well known that lung cancer incidence among northern Thai women is one of the highest in Asia (an annual age-adjusted incidence rate of 37.4 per 100,000). This fact has aroused serious concern among the public and the government and has drawn much attention and interest from the scientific community. To investigate the potential causes of this relatively high lung cancer incidence, this study employed Fourier transform infrared spectroscopy (FTIR) transmission spectroscopy to identify the chemical composition of the $PM_{2.5}$ collected using Quartz Fibre Filters (QFFs) coupled with MiniVol$^{TM}$ portable air samplers (Airmetrics). $PM_{2.5}$ samples collected in nine administrative provinces in northern Thailand before and after the "Haze Episode" in 2013 were categorised based on three-dimensional plots of a principal component analysis (PCA) with Varimax rotation. In addition, the incremental lifetime exposure to $PM_{2.5}$ of both genders was calculated, and the first derivative of the FTIR spectrum of individual samples is here discussed.

Polarimetry of solar system small bodies using the Seoul National University 61cm telescope and TRIPOL

  • Jin, Sunho;Ishiguro, Masateru;Kwon, Yuna Grace;Geem, Jooyeon;Bach, Yoonsoo P.;Seo, Jinguk;Sasago, Hiroshi;Sato, Shuji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2019
  • It is known that lights scattered by comets and asteroids are partially polarized. From polarimetric observations of those objects, we can investigate physical properties, such as albedos, sizes of cometary dust particles and regolith of asteroids. Since the polarization degrees of those objects highly depend on their phase angles (Sun-object-observer's angles), long-term monitoring observations are required. Moreover, comets show unforeseeable activations (i.e., outbursts) which need follow-up observations to understand the mechanism. In order to realize such monitoring and transient observations, we installed the Triple-Range Imager and POLarimeter (TRIPOL) on the 61cm telescope of Seoul National University (Hereafter, SNU) Gwanak campus. With this combination, we can obtain g', r', i' bands photopolarimetric images simultaneously with $8.0^{\prime}{\times}8.0^{\prime}$ field of view and pixel resolution of 0.94" pixel-1. Here, we make a presentation regarding the photometric and polarimetric performances of TRIPOL on the SNU 61cm telescope. In addition, we introduce initial polarimetric results of asteroid and comets with the instruments. First, we determine the limiting magnitudes (defined as magnitudes for S/N=5) of $15.17{\pm}0.06$ (g'-band), $15.68{\pm}0.01$ (r'-band), $16.24{\pm}0.03$ (I'-band), respectively, with total 240-seconds exposure (four 60-seconds exposure images, each was taken at different rotation angle for the half-wave plate). Second, we found that the instrumental polarization is negligibly small, ($-0.32{\pm}0.04%$ in the g', $-0.36{\pm}0.05%$ in the r' and $-0.21{\pm}0.04%$ in the i'-bands), while the polarization efficiencies are large enough to maximize the performance (i.e., $97.52{\pm}0.03%$ in the g', $98.83{\pm}0.02%$ in the r' and $99.15{\pm}0.02%$ in the i'-bands). With the instruments, we made observations of three Jupiter-family comets, 21P/Giacobini-Zinner, 38P/Stephan-Oterma, and 46P/Wirtanen and plan to observe one near-Earth asteroid, (433) Eros, on a trial basis. Especially for comets, we discriminate signals from dust and gas to eliminate gas contamination, which are known to change observed degree of linear polarization, using multi-band images. We confirm that the phase angle dependency of these comets are consistent with previous observations, probably because polarimetric property of Jupiter-family comets are broadly homogeneous unlike asteroids. We will also describe future observation plans using TRIPOL and SNU 61cm telescope.

  • PDF

Preliminary study on a spoke-type EPB shield TBM by discrete element method (개별요소법을 활용한 스포크 타입 토압식 쉴드TBM의 예비 해석 연구)

  • Lee, Chulho;Chang, Soo-Ho;Choi, Soon-Wook;Park, Byungkwan;Kang, Tae-Ho;Sim, Jung Kil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.1029-1044
    • /
    • 2017
  • The Discrete Element Method (DEM) is one of the useful numerical methods to analyze the behavior of the ground formation by computing the motion and interaction using particles. The DEM has not been applied in civil engineering but also a wide range of industrial fields, such as chemical engineering, pharmacy, material science, food engineering, etc. In this study, to review a performance of the spoke-type earth pressure balance (EPB) shield TBM (Tunnel Boring Machine), the commercial software based on the DEM technology was used. An analysis of the TBM during excavation was conducted according to two pre-defined excavation conditions with the different rotation speed of a cutterhead. During the analysis, the resistant torque at the face of the cutterhead, the compressive force at the cutterhead and shield surface, the muck discharge at the screw auger were measured and compared. Upon the two kinds of excavation conditions, the applicability of the DEM analysis was reviewed as a modelling method for the TBM.

Horizontal Stress Based on the Calculation of Lateral Stress Ratio in Unsymmetrical Space (비대칭 공간의 수평응력비 산정에 따른 수평응력에 관한 연구)

  • Moon Chang-Yeul;Lee Soo-Ki;Kwon Seung-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.177-189
    • /
    • 2004
  • The backfilled space carl have various shapes such as vertical or lateral symmetric, unsymmetric slope depending on field conditions. Kellogg (1993) suggested the different equations for the backfill earth pressure and the lateral stress ratio considering that the stresses are different between the symmetrically sloped backfilled space and the vertical one. Kellogg (1993) assumed the stress generated on sloped wall surface as the simple internal friction angle of backfilled soil. However, Moon (1997) suggested modified Kellogg equation assuming that stress behavior in the sloped wall will be varied according to the rotation angle of principal stress and the friction of sloped wall surface. This study has compared and investigated the horizontal stresss of unsymmetrical backfilled space numerically and experimentally obtained when Kellogg lateral stress ratio is appled to and when average lateral stress ratio considering unsymmetric backfill slop of left and right are applied to the modified Kellogg equation. It is shown that the horizontal stress on the sloped wall has good match numerically and experimentally in the modified Kellogg equation when Kellogg's lateral stress ratio in symmetric condition is applied to the unsymmetric condition. But the horizontal stress on the vertical wall shows disagreement numerically and experimentally. The horizontal stress results in good agreement numerically and experimentally when the average lateral stress ratio of left and right at unsymmetric slop as applied to the modified Kellogg equation. Therefore, it is estimated that the application of the average lateral stress ratio to the left and right wall should be considered when backfilled space formed unsymmetric conditions.

Permanent Deformations of Piles in Sand Under Cyclic Lateral Loads (모래지반에서 반복수평하중을 받는 말뚝의 영구변형)

  • Paik, Kyu-Ho;Park, Won-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.63-73
    • /
    • 2010
  • Monopiles, used as one foundation option for offshore wind turbines, are usually subjected to great cyclic lateral loads due to wind and wave. In this study, model pile load tests were performed using calibration chamber and three model piles with different pile lengths in order to investigate the behavior of laterally cyclic loaded piles driven into sand. Model test results show that the first loading cycle generates a bigger displacement than the following ones, and the permanent displacement of piles by one loading cycle decreases with increasing the number of cycles. 1-way cyclic loading causes the permanent displacement in the same direction as cyclic loading, whereas 2-way cyclic loading causes the permanent displacement in the reverse direction of initial loading. It is also observed that the permanent displacement of piles due to cyclic lateral loads increases with decreasing relative density of soil and with increasing the magnitude of cyclic loads. However, it is insensitive to the earth pressure ratio of soil and embedded pile length. In addition, based on the model pile load test results, equations for estimation of the permanent lateral displacement and rotation angle of piles due to 1-way cyclic lateral loads are proposed.

Multicomponent RVSP Survey for Imaging Thin Layer Bearing Oil Sand (박층 오일샌드 영상화를 위한 다성분 역VSP 탐사)

  • Jeong, Soo-Cheol;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.234-241
    • /
    • 2011
  • Recently, exploration and development of oil sands are thriving due to high oil price. Because oil sands reservoir usually exists as a thin layer, multicomponent VSP, which has the advantage of the high-resolution around the borehole, is more effective than surface seismic survey in exploring oil sand reservoir. In addition, prestack phase-screen migration is effective for multicomponent seismic data because it is based on an one-way wave equation. In this study, we examined the applicability of the prestack phase-screen migration for multicomponent RVSP data to image the thin oil sand reservoir. As a preprocessing tool, we presented a method for separating P-wave and PS-wave from multicomponent RVSP data by using incidence angle and rotation matrix. To verify it, we have applied the developed wavefield separation method to synthetic data obtained from the velocity model including a horizontal layer and dipping layers. Also, we compared the migrated image by using P-wave with that by using PS-wave. As a result, the PS-wave migrated image has higher resolution and wide coverage than P-wave migrated image. Finally, we have applied the prestack phase-screen migration to the synthetic data from the velocity model simulating oil sand reservoir in Canada. The results show that the PS-wave migrated image describe the top and bottom boundaries of the thin oil sand reservoir more clearly than the P-wave migrated image.

Measurement of Friction Angle of Sand from Horizontal Stress and Torque Acting on Vane (베인에 작용하는 수평응력과 토크를 이용한 모래의 마찰각 측정)

  • Park, Sung-Sik;Kim, Dong-Rak;Lee, Sae-Byeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.63-71
    • /
    • 2018
  • In this study, the torque and horizontal stress acting on vane were measured and then used to determine a friction angle of sand. A dry Nakdong River sand was prepared for loose and dense conditions in a cell and then pressurized with 25, 50, 75 or 100 kPa from the surface of sand. A vane (5cm in diameter and 10cm in height) was rotated and the torque and horizontal stress were measured at real time. A maximum torque was 3.5-9.5Nm for loose sand and 7.4-17.6Nm for dense sand, respectively. The maximum torque increased as an overburden pressure increased. The maximum torque obtained at 14-20 degrees of vane rotation, which was not influenced by the initial alignment of earth pressure and vane blade. An initial horizontal stress ratio was 0.33-0.35 on the average. The horizontal stress increased initially and then decreased due to particle disturbance. A friction angle was calculated from real time varying horizontal stress and torque, which decreased with increasing overburden pressure. The friction angle of loose sand from vane shear test was similar to that of direct shear test but that of dense sand was overestimated.

The Study on the Class Difficulty of Elementary Pre-service Teachers' Seasonal Change Unit (초등예비교사의 계절변화 단원에 대한 수업곤란도 연구)

  • Soon-shik Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.3
    • /
    • pp.340-350
    • /
    • 2023
  • This study analyzed the difficulty level of class on the seasonal change unit for 84 students at a university of education. The conclusions of this study are as follows. First, if we first present the four topics that make up the seasonal changes in elementary science, the subjects that have the greatest difficulty in teaching for prospective elementary school teachers are 'Why do seasonal changes occur?' (Teaching difficulty level 4.05), 'The sun changes depending on the season' What is the difference between the southern altitude and the length of day and night?' (difficulty level of class, 3.12), 'What is the relationship between the altitude of the sun, length of shadow, and temperature during the day?' (difficulty level of class, 2.85), 'How does the temperature change depending on the season?' (class difficulty level 2.80). As a result, in the elementary science season change unit, the class on the four topics 'Why do seasons change?', which is classified as a class topic that requires the concept of spatial perception, showed a higher level of class difficulty than other units. Second, in the seasonal change unit, various factors of class difficulty appeared depending on the class topic. When pre-service elementary school teachers look at the factors that make class difficult when teaching a lesson on seasonal changes in order of frequency, 42 (50%) said 'Experimental instruction for comparing the altitude of solar masculine according to the tilt of the axis of rotation', followed by 'Solar masculine'. 38 people (45%) answered 'Difficulty in explaining mid-high altitude and the length of day and night', 27 people (32%) answered 'Difficulty in explaining the concept of mid-high altitude', and 24 people (32%) answered 'Difficulty in explaining seasonal changes in the sun's position.' 29%), 20 people (24%) said 'Explain the reasonable reason why the height of the light should be adjusted when measuring the solar altitude', and 16 people (19%) said 'It is difficult to explain the reason for the discrepancy between the solar altitude and the maximum temperature'. ), 'difficulties in measuring sand (ground) temperature' were mentioned by 12 people (14%). Third, when analyzing the factors of class difficulty, there were more curriculum factors than teacher factors. In this context, the exploratory activities on 'Why do seasonal changes occur?', the fourth topic of the seasonal change unit in which elementary school pre-service teachers showed the greatest difficulty in teaching, need improvement in terms of the curriculum.

An Understanding the Opening Style of the West Philippine Basin Through Multibeam High-Resolution Bathymetry (고해상도 다중빔음향측심 지형자료 분석을 통한 서필리핀분지의 진화 연구)

  • Hanjin Choe;Hyeonuk Shin
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.643-654
    • /
    • 2023
  • The West Philippine Basin, an oceanic basin half the size of the Philippine Sea Plate, lies in the western part of the plate and south of the Korean Peninsula on the Eurasian Plate. It subducts beneath the Eurasian Plate and the Philippine Islands bordering the Ryukyu Trench and the Philippine Trench with 25-50% of this basin already consumed. However, the history of the opening of the basin's southern region has been a topic of debate. The non-transform discontinuity formed during the seafloor spreading is similar to the transform fault boundaries normally perpendicular to mid-ocean ridge axes; however, it was created irregularly due to ridge propagations caused by variations of mantle convection attributable to magma supply changes. By analyzing high-resolution multi-beam echo-sounding data, we confirmed that the non-transform discontinuity due to the propagating rift evolved in the entire basin and that the abyssal hill strike direction changed from E-W to NNW-SSE from the fossil spreading center. In the early stage of basin extension, the Amami-Sankaku Basin was rotated 90 degrees clockwise from its current orientation, and it bordered the Palau Basin along the Mindanao Fracture Zone. The Amami-Sankaku Basin separated from the Palau Basin while the spreading of the West Philippine Basin began with a counter-clockwise rotation. This indicates that the non-transform discontinuities formed by a sudden change in magma supply due to the drift of the Philippine Sea Plate and simultaneously with the rapid changes in the spreading direction from ENE-WSW to N-S. The Palau Basin was considered to be the sub-south of the West Philippine Basin, but recent studies have shown that it extends into an independent system. Evidence from sediment layers and crustal thickness hints at the possibility of its existence before the West Philippine Basin opened, although its evolution continues to be debated. We performed a combined analysis using high-resolution multi-beam bathymetry and satellite gravity data to uncover new insights into the evolution of the West Philippine Basin. This information illuminates the complex plate interactions and provides a crucial contribution toward understanding the opening history of the basin and the Philippine Sea Plate.

Deformation structures of the Jurassic Ogcheon granite and the Honam Shearing, Ogcheon Area, Korea (옥천지역 쥬라기 옥천화강암의 변형구조와 호남전단운동)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2010
  • The Jurassic Daebo Ogcheon granite is distributed in the Ogcheon area which is located in the central part of the Ogcheon Belt, Korea. This paper newly examines the timing of Honam shearing on the basis of the petrofabric researches on the deformation structures of the Ogcheon granite. The structural shape of Ogcheon granite is mainly characterized by a wedge shaped of E-W trend and an elongate shape of ENE trend in geological map and by contacts parallel to the regional S1 foliation in the host Ogcheon supergroup. It indicates that the pluton was permittedly emplaced after the S1 formation. The main deformation structures are marked by a solid-state tectonic foliation of N-S trend, which passes through the contact of the pluton, and by an aplitic dyke of E-W trend, and by sinistral, NW and E-W oriented shear zones on the eastern border of the pluton. The petrofabric study on the main deformation structures suggests that the tectonic foliation and the aplitic dyke were formed by the Honam dextral strike-slip shearing of (N)NE trend at ca. $500{\sim}450^{\circ}C$ deformation temperature, and that the sinistral shear zones could be induced by the dextral rotation of the pluton from its original site of intrusion, that is, by the shear strain which is due to sliding of the pluton past the host rocks. The history of emplacement and deformation of the Ogcheon granite and the previous results on the timing of Honam shearing would be newly established and reviewed as follows. (1) Early~Middle Jurassic(187~170 Ma); intrusion of syntectonic foliated granite related to Early Honam shearing, (2) Middle Jurassic(175~166 Ma); main magmatic period of Jurassic granitoids, the permitted emplacement of the Ogcheon granite, (3) Middle~Late Jurassic(168~152 Ma); main cooling period of Jurassic granitoids, the deformation of the Ogcheon granite related to Late Honam shearing. Thus, this study proposes that the Honam shear movement would occur two times at least during 187~152 Ma (ca. 35 Ma) through the intertectonic phase of 175~166 Ma.