• 제목/요약/키워드: rotating spindle

검색결과 124건 처리시간 0.034초

An Analysis of Dynamic Behavior of Fluid Dynamic Bearing for Hard Disk Drive Spindle Motor

  • Song, Young-Han;Yoo, Jin-Gyoo;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • 제4권1호
    • /
    • pp.18-26
    • /
    • 2003
  • Recently, fluid dynamic bearings (EDBs) have important applications in miniature rotating machines such as those found in the computer information storage industry, due to their outstanding low acoustic noise and NRRO (Non-Repeatable Run Out) characteristics. This research investigates the dynamic behavior of fluid dynamic bearings composed of hydrodynamic herringbone groove journal and spiral groove thrust bearing. The five degrees of freedom of FDB are considered to describe the real motion of a general rotor bearing system. The Reynolds equation and five nonlinear equations of motion for the dynamic behavior are solved simultaneously, The incompressible Reynolds equation is solved by using the finite element method (FEM) in order to calculate the pressure distribution in a fluid film and the five equations of motion by using the Runge-Kutta method. The reaction forces and moments are obtained by integrating the pressure along the fluid film. Numerical results are validated by comparing with the previously published experimental and numerical results. As a result the dynamic behavior of FDB spindle such as orbit, floating height, and angular orbit is investigated by considering the conical motion under the static and dynamic load conditions.

진동 마이크로 밀링을 이용한 미세 반복 패턴 가공 기술 연구 (Machining of Repetitive Micro Patterns using Oscillation Micro Milling)

  • 노승국;김경호;박종권
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.381-387
    • /
    • 2014
  • This paper introduces a system to machine micro-sized patterns effectively on surface based on micro-milling process using tools with simultaneous rotation and oscillation, oscillation micro milling. To review the effectiveness of proposed concept, we integrated a micro-spindle supported by active magnetic bearings with a precision 3-axis air bearing stage using double-wedge mechanism, and tested this oscillation milling. Two types of oscillation milling were tested, which are linear oscillation milling with a flat end mill and elliptical oscillation milling with a ball end mill with 0.3 mm of diameter. The spindle was rotating 110 krpm and workpiece was moving constant speed of 2~8 mm/sec during the oscillation milling. As the results, multiple oval shape dimples were generated in regular spacing, and the variation of elliptical motion made different shapes of patterns. The results showed that proposed oscillation milling can be successfully used for machining repeated micro-patterns.

유체 동압 베어링 지지 HDD 스핀들 계의 자유 및 강제 진동 해석 (Free and Forced Vibration Analyses of HDD Spindle Systems Supported by Hydrodynamic Bearings)

  • 임승철
    • 한국소음진동공학회논문집
    • /
    • 제13권11호
    • /
    • pp.852-859
    • /
    • 2003
  • In order to meet the growing demands for higher storage density as well as lower noise level, the spindles in hard disk drives are to be supported by hydrodynamic bearings in place of conventional ball-type ones. However, the existing models are inappropriate to apply to accurate prediction of vibration characteristics because the HDD spindle tends to take quite a complex shape to secure its performance and cost-effectiveness. In this context, this paper treats analysis of free and forced vibrations of such-designed HDD spindles based on more sophisticated models and validations via experiments. Remarkably, to this end all the components in the system are modeled as elastic adopting the finite element method.

공기 베어링 개념을 이용한 디스크 진동 저감 연구 (Disk Vibration Suppression with Air Bearing Concept)

  • 최의곤;임윤철
    • Tribology and Lubricants
    • /
    • 제20권4호
    • /
    • pp.197-203
    • /
    • 2004
  • As the rotational speed and the track density are increased, the vibration of disk/spindle system becomes critical issue in order to reduce the track mis-registration. In this work, we propose a simple inclined air bearing (20${\times}$20 mm) system which is located very near to the rotating poly-carbonate disk, and investigate suppressing effect for the disk vibration mode (0,0) both experimentally and numerically. We find dynamic stiffness and damping coefficients of air bearing and then apply those values to the disk vibration analysis. Numerical results show about 10 percent difference comparing to the experimental results. Also we investigate the reduction of disk vibration and power consumption with two different kinds of inclined bearing for the normal disk drive system experimentally. We find inclined air bearing can reduce about 30 percents of the transverse disk vibration.

경사면 가공에서 공구의 런아웃과 표면 형상과의 관계에 관한 연구 (A Study on the Relationship of Surface Shape and Tool Runout in the Ball-End Milling)

  • 박희범
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.591-596
    • /
    • 1999
  • Due to the development of CNC machining centers and the complexity of machined part geometry, the ball-end milling became the most widely used the cutting process. Generally, the tool runout defined as the eccentricity of a rotating tool set in the holder involved the spindle runout and the problem of tool runout generated to remove the workpiece is a main factor affecting the machining accuracy. In this paper, the relationship of tool runout(zero-to-peak, P-K) and surface shape on the change of cutting conditions is studied and it is proposed the probability of prediction of surface shape from the in-process tool runout measurements with high response displacement sensor in the ball-end milling

  • PDF

공기 베어링 개념을 이용한 디스크 진동 저감 연구 (Disk Vibration Suppression with Air Bearing Concept)

  • 최의곤;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.129-137
    • /
    • 2001
  • As the rotational speed and the track density are increased, the vibration of disk/spindle system becomes critical issue. In this work, we propose a simple inclined air bearing(20mm${\times}$20mm) system which is positioned very near to the rotating disk especially compact disc(CD) as a flexible disk, and we investigate suppressing effect about disk mode (0,0) both experimentally and numerically. We find dynamic stiffness and damping coefficients of bearing and apply to the disk vibration. The results show about 10 percent errors comparing to the experimental results. Also we investigate experimentally the reduction of disk vibration and power consumption with two different kinds of inclined bearing for normal disk drive system, which has tray and cover. We find inclined air bearing can decrease about 30 percents of the original disk vibration amplitude.

  • PDF

유체 동압 베어링 지지 HDD 스핀들 계의 자유 및 강제 진동 (Free and Forced Vibrations of HDD Spindle Systems Supported by Hydrodynamic Bearings)

  • 임승철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.598-604
    • /
    • 2003
  • In order to meet the growing demands for higher storage density as well as lower noise level, the spindles In hard disk drives are to be supported by hydrodynamic bearings in place of conventional ones. However, the existing models are inappropriate to apply to accurate Prediction or vibration characteristics because the Inn spindle tends to take quite a complex shape to secure the performance of the new type bearings. In this context, this paper treats analysis of free and forced vibrations of such-designed HDD spindles based on more sophisticated models and validation by means of experiments. Remarkably, to this end each component in the system is modeled as elastic adopting the finite element method.

  • PDF

소형 스핀들 시스템 적용을 위한 형상기억합금 기반 공구 클램핑 장치의 체결특성 고찰 (Investigation for Clamping Properties of the Tool Clamping Device Based on the Shape Memory Alloy for Application of a Micro Spindle System)

  • 신우철;노승국;박종권;이득우;정준모
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.9-14
    • /
    • 2007
  • In this paper, a rotating tool clamping device was developed based on a shape memory alloy(SMA) and its feasibility as a tool holder was experimentally explored. The SMA-based device was able to alter clamping to unclamping through temperature control within 1 second. The means and repeatability(${\sigma}$) of the tool clamping force were 185.5N and 6N respectively and its drifts were less than 3% for an hour. Considering the temperature hysteresis of the SMA-based tool clamping device, it is necessary to heat the SMA ring to around $50^{\circ}C$ after tool change to obtain more clamping force.

공작기계의 유연 다물체 동역학 및 제어기 연계해석 (Coupled Flexible Multi-Body Dynamics and Controller Analysis of Machine Tool)

  • 김동만;김동현;박강균;최현철
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.307-312
    • /
    • 2010
  • In this study, advanced computational technique for mechatronic analysis has been developed for the efficient design and test of typical machine tool models. Flexible multi-body dynamic (FMBD) analysis method combined with motion controller including control logics is used to simulate typical operation conditions. The present FMBD machine tool model is composed of flexible column structure, rigid body spindle, vertical motion guide (arm) and screw elements. Driving motor clement with rotating degree-of-freedom is interconnected and governed by the designed Matlab Simulink control logic, and then the position of the spindle is feedback into the control logic. It is practically shown from the results that the investigation of designed machine tools with controller can be effectively conducted and verified.

공작기계 주축용 스핀들 전동기를 위한 관성추정알고리즘 (Inertia Identification Algorithm for Spindle Motor of Machine Tool)

  • 정병환;최규하;최경진;이태리
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.43-45
    • /
    • 2007
  • This Paper proposes a simple identification method of the moment of inertia for high performance spindle motor of machine tool. It uses the dynamic equation of a simple mechanical system, the torque reference of a speed controller, and the actual rotating speed of machine. The identified inertia can be for auto-tuning of the gains in the speed controller. The effectiveness of the proposed method is proved by the computer simulation.

  • PDF