• Title/Summary/Keyword: rotating spindle

Search Result 124, Processing Time 0.027 seconds

A Study on Motion Constraint of Rotating Spindle in the Parallel Part at the Blocking Plate (평형부 내에서 회전 운동을 하는 스핀들의 운동 구속에 대한 연구)

  • Lim Jong Hyun;Han Geun Jo;Shim Jae Joon;Han Dong Seop;Lee Seong Wook;Kim Tae Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.136-142
    • /
    • 2005
  • The function of main starting valve for marine engine is to supply cylinder with the air to start marine engine. But, if the spindle, one of the main starting valve components, doesn't rotate accurately at the designated air pressure, the marine engine may have some trouble in starting. So, to resolve the problem due to spindle .elation in the main starting valve, the blocking device (blocking plate, limit switch, etc.) is installed in the upper part of spindle to constrain the rotation. So, in this paper we introduced the rotation constraining ability of blocking plate prevent the spindle from mis-working in the main starting value of the marine engine.

Measurement of Radial Error Motions of a Rotating Spindle by Moire Topography (모아레 원리를 이용한 스핀들의 반경방향 회전정도 측정)

  • 박윤창;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2723-2729
    • /
    • 1993
  • Moire principles are applied to the measurement of the spindle radial error motion. As opposed to conventional techniques, no master cylinder or ball is needed in the measurement so that the offset and out-of-roundness errors of the master can be inherently eliminated. Two periodic circular gratings are used, one is made on the spindle and the other is held stationary on the reference frame. When the two gratings are seen superimposed during spindle rotation, an interference fringe pattern is observed from which the information on the eccentricity between the two gratings can be extracted with high precision. The optical design and fringe analysis techniques of a prototype measurement system are described in detail with exemplary measurement results.

Quality Improvement of Smart UAV Rotor-Hub Part Through Gas Nitriding of Maraging Steel (가스질화처리 적용을 통한 스마트무인기 머레이징강 로터허브 부품 품질개선)

  • Lee, Myeong Kyu;Choi, Seong Wook;Kim, Jai Moo
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.33-39
    • /
    • 2014
  • Feathering spindle is one of the critical parts of the rotor system in the Smart Unmanned Aerial Vehicle(SUAV) that it was manufactured with special material, Maraging C300. During the initial ground and tie-down flight tests of the SUAV, surface of the feathering spindle contacting to the needle-roller bearings showed excessive wear and dent due to high vibrating loads transferred from the rotating blades. Gas nitriding process was applied to the bearing contact surface of the feathering spindle to increase surface hardness so as to improve the surface defects. This paper briefly presents the gas nitriding process adopted and the spindle quality improvements including wear and corrosion resistance.

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF

Tool-Setup Measurement Technology of High Speed Precision Machining Tool (고속 정밀 가공기의 공구셋업 측정기술)

  • 박경택;신영재;강병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1066-1069
    • /
    • 2004
  • Recently the monitoring system of tool setup in high speed precision machining tool is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining center and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3∼20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setting easy, quick and precise in high speed machining center. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setting monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000 ∼ 60,000 rpm. The dynamic phenomena of tool-setup is analyzed by implementing the monitoring system of rotating tool system and the noncontact measuring system of micro displacement in high speed.

  • PDF

Vibration Analyses of HDD Spindle Systems Supported by Hydrodynamic Bearings Taking into Account Stator's Flexibility (고정자의 유연성을 고려한 유체베어링 지지 HDD 스핀들 계의 진동해석)

  • Lim, Seungchul;Chun, Sang-Bok;Han, Yun-Sik;Lee, Ho-Seong;Kim, Cheol-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.749-756
    • /
    • 2005
  • This paper presents vibration analyses of hard disk drive (HDD) spindle systems based on the finite element method. The systems under investigation have a cantilevered shaft rotating on hydrodynamic bearings. In particular, the influence of stator's flexibility on major modes has been taken into account in dual ways lumped and distributed-parameter model approfches. Even the latter employs relatively macroscopic elements instead of extremely fine ones Popular in commercial codes. In order to prove the effectiveness of such formulated models, two types of HDD prototypes featuring different hub and stator structures are selected as examples. Compared to the first, the second type has a reinforced stator that would raise the natural frequency of the hub's translational (or sideway) mode. Both free and forced vibration characteristics are computed, and subsequently compared with the experimental data. It is our conclusion that Particularly the Proposed distributed model method is an efficient design tool for state-of-the-art HDD spindle systems.

Micro-electrode machining characteristics using the Micro-EDM (마이크로 방전가공기를 이용한 미세전극 가공특성)

  • 안현민;김영태;박성준;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1003-1007
    • /
    • 2002
  • Micro-EDM is generally used far machining micro 3-D structure. For micro-EDM, first of all, micro-electrode fabrication is needed and WEDG system is proposed for tool electrode fabrication method. When tool electrode is fabricated using WEDG system, its characteristics are under the control of many EDM parameters. Also relations between the parameters affect electrode fabrication. In this study, experiments are carried out to analyze effects of EDM parameters on micro-electrode fabrication. Experimental method and analysis are used to experimental design method. Factors used in experiments are composed of applied voltage, capacitance, wire feed rate, spindle rotating speed, machining time. As a result of experiments, wire feed rate, machining time and capacitance is proportional to gap distance(material removal), the other parameters(applied voltage, spindle rotating speed) and relations between the parameters have little influence on machining.

  • PDF

Finite Element Analysis of Dynamic Characteristics of HDD Spindle System Considering Supporting Structure with Complex Shape (복잡한 지지구조의 유연성을 고려한 HDD 스핀들 시스템의 유한요소 동특성 해석)

  • 한재혁;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.312-318
    • /
    • 2001
  • This paper suggests the finite element method to analyze the dynamic characteristics of a rotating HDD system including the supporting structure with general shape. The flexible supporting structure was modeled by tetrahedra elements to produce a finite element model of disk-spindle-shaft-housing system and the dynamic characteristics of the HDD system was investigated due to the change of rotating speed. The validity of the presented method was verified by the modal testing. The supporting structure has an crucial effect on lower modes for HDD system, so that it is required to consider the supporting structure to accurately analyze the dynamic characteristics of HDD system.

  • PDF

Speed Sensorless Torque Monitoring On CNC Lathe Using Internet (인터넷을 이용한 CNC 선반의 속도 센서리스 토크감시)

  • 홍익준;권원태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.467-470
    • /
    • 2002
  • Internet provides the useful method to monitor the current states of the machine tool no matter where a personnel is monitoring them. In this paper, a monitoring method of the torque of the machine tool's spindle induction motor using internet is suggested. The torque of vector controlled induction motor is estimated without speed measuring sensor. Only stator currents are measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. Graphical programming is used to implement the suggested algorithm, to monitor the torque of an induction motor in real time and to make the estimated torque monitored on client computers. To solve the fluctuation problem of estimated torque caused from instantly varying rotating speed of an induction motor, the rotating speed is reconstructed based on the measured current signals. Mechanical part of the machine tool is also reconstructed using the data obtained from preliminary experiments. Torque of the spindle induction motor is well monitored on the client computers with 3% error range under various cutting conditions.

  • PDF

Feasibility Study on the New Structure of a Spindle Motor for Hard Disk Drive

  • Kim, Tae-Woo;Chang, Jung-Hwan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.295-299
    • /
    • 2013
  • This paper presents the new structure of a spindle motor for hard disk drive (HDD). It can produce axial force as well as torque without a pulling plate or a pulling magnet required for the normal operation of a hydrodynamic bearing in rotating-shaft structure. The proposed models have different air gap length along the axial direction by changing the thickness of permanent magnet (PM). One has a single slope and the other has double slopes on the surface of PM. For the design of the proposed models, variables are defined and its effects on the motor performances are investigated by 3-demensional finite element analysis (FEA). The equi-performance curves are investigated for the main characteristics of the spindle motor such as generated torque, axial force and torque ripple ratio. The validity of the proposed models is verified by the feasibility study and performance evaluation.