• Title/Summary/Keyword: rotating mesh

Search Result 83, Processing Time 0.024 seconds

Vibration Analysis of wind turbine gearbox with frequency response analysis (주파수 응답해석을 통한 풍력발전기용 기어박스의 동특성해석)

  • Park, Hyunyong;Park, Junghun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.178.2-178.2
    • /
    • 2010
  • The wind turbine gearbox is important rotating part to transmit torque from turbine blade to generator. Generally, gear shaft which rotates causes vibration by influence of stiffness and mass with gear shaft. Root cause of this vibration source is well known to gear transmission error that is decided from gear tooth property. Transmission error excites a gear, and makes excitation force that is vibrated shaft. This vibration of shaft is transmitted to gearbox housing through gearbox bearing. If the resonance about which the natural frequency of the gearbox accords with shaft exciting frequency occurs, a wind turbine can lead to failure. The gearbox for wind turbine should be considered influence of vibration as well as the fatigue life and its performance by such reason. The cause to vibration should be closely examined to reduce influence of such vibration. In this paper, the cause of the vibration which occurs by a gearbox is closely examined and the method which can reduce the vibration which occurred is shown. It is compared with vibration test outcome of a 3MW gearbox for verification of the method shown by this paper.

  • PDF

Numerical Analysis on Flow Characteristics of a Vane Pump (Vane Pump의 유동 특성에 대한 수치 해석)

  • Lee, Sang-Hyuk;Jin, Bong-Yong;Hur, Nahm-Keon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.34-40
    • /
    • 2007
  • In this study, the characteristic of a vane pump of automotive power steering system is numerically analyzed. The vane pump changes the energy level of operation fluid by converting mechanical input power to hydraulic output. To simulate this mechanism, moving mesh technique is adopted. As a result, the flow rate and pressure are obtained by numerical analysis. The flow rate agrees well with the experimental data. Moreover, the variation and oscillation of the pressure around the rotating vane are observed. As a result of flow characteristics, The difference of pressure between both side of vane tip causes the back flow into the rotor. As the rotational velocity increases, the flow rate at the outlet and the pressure in the vane tip rises with higher amplitude of oscillation. In order to reducing the oscillation, the design of devices for decreasing the cross-area of the outlet part and returning the flow from the outlet to the inlet is required.

Flexible CFD meshing strategy for prediction of ship resistance and propulsion performance

  • Seo, Jeong-Hwa;Seol, Dong-Myung;Lee, Ju-Hyun;Rhee, Shin-Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.139-145
    • /
    • 2010
  • In the present study, we conducted resistance test, propeller open water test and self-propulsion test for a ship's resistance and propulsion performance, using computational fluid dynamics techniques, where a Reynolds-averaged Navier-Stokes equations solver was employed. For convenience of mesh generation, unstructured meshes were used in the bow and stern region of a ship, where the hull shape is formed of delicate curved surfaces. On the other hand, structured meshes were generated for the middle part of the hull and the rest of the domain, i.e., the region of relatively simple geometry. To facilitate the rotating propeller for propeller open water test and self-propulsion test, a sliding mesh technique was adopted. Free-surface effects were included by employing the volume of fluid method for multi-phase flows. The computational results were validated by comparing with the existing experimental data.

Analysis of the Aeroacoustic Characteristics of Cross-Flow Fan Using a Commercial CFD Code (상용 CFD 코드를 이용한 횡류홴 공력소음 특성 해석)

  • Jeon, Wan-Ho;Chung, Moon-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.289-294
    • /
    • 2002
  • In this study, performance, flow characteristics and noise of a cross-flow-fan system, used in indoor unit of the split-type air conditioner, were predicted by computational simulation. Triangular elements were used to mesh the calculation domain and quadrilateral elements were attached to the blade surfaces and walls to enhance the simulation quality. The unsteady incompressible Wavier-Stokes equations were solved using a sliding mesh technique on the interface between rotating fan region and the outside. Two stripes of velocity stream inside the cross-flow-fan were shown - the one was due to the eccentric vortex and the other was due to the normal entrance flow. As the flow rate increased, the center of the eccentric vortex moved toward the inner blade tip and rear-guide, and the exiting flow still had velocity variation along the stabilizer, which can increase the noise level. The acoustic pressure was calculated by using Lowson's equation. From the calculated acoustic pressure, it was found that the trailing edge is a dominant of acoustic generation.

  • PDF

Navier-Stokes Simulation of Unsteady Rotor-Airframe Interaction with Momentum Source Method

  • Kim, Young-Hwa;Park, Seung-O
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.125-133
    • /
    • 2009
  • To numerically simulate aerodynamics of rotor-airframe interaction in a rigorous manner, we need to solve the Navier-Stokes system for a rotor-airframe combination as a whole. This often imposes a serious computational burden since rotating blades and a stationary body have to be simultaneously dealt with. An efficient alternative is to adopt a momentum source method in which the action of rotor is approximated as momentum source over a rotor disc plane in a stationary computational domain. This makes the simulation much simpler. For unsteady simulation, the instantaneous momentum sources are assigned only to a portion of disk plane corresponding to blade passage. The momentum source is obtained by using blade element theory with dynamic inflow model. Computations are carried out for the simple rotor-airframe model (the Georgia Tech model) and the results of the simulation are compared with those of the full Navier-Stokes simulation with moving mesh system for rotor and with experimental data. It is shown that the present simulation yields results as good as those of the full Navier-Stokes simulation.

Analysis on the In-cylinder Flow of HIMSEN 6H21/32 Engine (HIMSEN 6H21/32 엔진 실린더 내 유동해석)

  • Yoon, Wook-Hyun;Kim, Jin-Won;Ha, Ji-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.934-939
    • /
    • 2001
  • In computational study of the flow in piston engines and the flow through moving valves, the use of moving vertices is essential for modelling flows with moving boundaries. The positions of cell vertices in such cases must be allowed to vary with time. To simulate 3-dimensional port-valve and piston-cylinder of HIMSEN 6H21/32 engine, a commercially available code, STAR-CD, was used. Changes in mesh geometry was specified by PROSTAR commands.(i.e. the Change Grid operation in the EVENTS command module.) Control of the intake flow is expected to play an important role as designers seek to obtain better fuel spray characteristics, fuel mixing and mixture preparation, combustion performance, and emissions reductions to meet national standards. As a result of analysis, velocity fields indicate the presence of a structured flow comprised of one pair of counter-rotating vortices under the intake valve during the early induction process. These flow structures remain visible for most of the intake process. As the piston moves towards BDC, these vortices develops into a larger tumbling motion that dominates the flow structure.

  • PDF

A Detail Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-bearing System (증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰)

  • 이안성;하진웅;최동훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.116-123
    • /
    • 2002
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element, this paper intends to look into in detail the coupled lateral and torsional vibration characteristics of a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled natural frequencies and their mode shapes upon varying the gear mesh stiffness with considerations on rotating speeds, and also by comparing the strain energies of lateral and torsional vibration modes. Results hale shown that some modes may hale the coupled lateral and torsional mode characteristics as the gear mesh stiffness Increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, j.e., a certain dominant mode may change from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

Pose Transformation of a Frontal Face Image by Invertible Meshwarp Algorithm (역전가능 메쉬워프 알고리즘에 의한 정면 얼굴 영상의 포즈 변형)

  • 오승택;전병환
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.153-163
    • /
    • 2003
  • In this paper, we propose a new technique of image based rendering(IBR) for the pose transformation of a face by using only a frontal face image and its mesh without a three-dimensional model. To substitute the 3D geometric model, first, we make up a standard mesh set of a certain person for several face sides ; front. left, right, half-left and half-right sides. For the given person, we compose only the frontal mesh of the frontal face image to be transformed. The other mesh is automatically generated based on the standard mesh set. And then, the frontal face image is geometrically transformed to give different view by using Invertible Meshwarp Algorithm, which is improved to tolerate the overlap or inversion of neighbor vertexes in the mesh. The same warping algorithm is used to generate the opening or closing effect of both eyes and a mouth. To evaluate the transformation performance, we capture dynamic images from 10 persons rotating their heads horizontally. And we measure the location error of 14 main features between the corresponding original and transformed facial images. That is, the average difference is calculated between the distances from the center of both eyes to each feature point for the corresponding original and transformed images. As a result, the average error in feature location is about 7.0% of the distance from the center of both eyes to the center of a mouth.

Aerodynamic analysis and control mechanism design of cycloidal wind turbine adopting active control of blade motion

  • Hwang, In-Seong;Lee, Yun-Han;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.11-16
    • /
    • 2007
  • This paper describes the cycloidal wind turbine, which is a straight blade vertical axis wind turbine using the cycloidal blade system. Cycloidal blade system consists of several blades rotating about an axis in parallel direction. Each blade changes its pitch angle periodically. Cycloidal wind turbine is different from the previous turbines. The wind turbine operates with optimum rotating forces through active control of the blade to change pitch angle and phase angle according to the changes of wind direction and wind speed. Various numerical experiments were conducted to develop a small vertical axis wind turbine of 1 kW class. For this numerical analysis, the rotor system equips four blades consisting of a symmetric airfoil NACA0018 of 1.0m in span, 0.22m in chord and 1.0m in radius. A general purpose commercial CFD program, STAR-CD, was used for numerical analysis. PCL of MSC/PATRAN was used for efficient parametric auto mesh generation. Variables of wind speed, pitch angle, phase angle and rotating speed were set in the numerical experiments. The generated power was obtained according to the various combinations of these variables. Optimal pitch angle and phase angle of cycloidal blade system were obtained according to the change of the wind direction and the wind speed. Based on data obtained from the above analysis, control device was designed. The wind direction and the wind speed were sensed by a wind indicator and an anemometer. Each blades were actuated to optimal performance values by servo motors.

Aerodynamic Shape Optimization of Helicopter Rotor Blades in Hover Using a Continuous Adjoint Method on Unstructured Meshes (비정렬 격자계에서 연속 Adjoint 방법을 이용한 헬리콥터 로터 블레이드의 제자리 비행 공력 형상 최적설계)

  • Lee, S.-W.;Kwon, O.-J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • An aerodynamic shape optimization technique has been developed for helicopter rotor blades in hover based on a continuous adjoint method on unstructured meshes. The Euler flow solver and the continuous adjoint sensitivity analysis were formulated on the rotating frame of reference for hovering rotor blades. In order to handle the repeated evaluation of the design cycle efficiently, the flow and adjoint solvers were parallelized using a domain decomposition strategy. A solution-adaptive mesh refinement technique was adopted for the accurate capturing of the tip vortex. Applications were made for the aerodynamic shape optimization of Caradonna-Tung rotor blades and UH60 rotor blades in hover. The results showed that the present method is an effective tool to determine optimum aerodynamic shapes of rotor blades requiring less torque while maintaining the desired thrust level.