• Title/Summary/Keyword: rotating fluid

Search Result 578, Processing Time 0.029 seconds

Stall and Counter-measure for Large Size Axial-Flow Fan (대형축류팬의 실속과 대책)

  • Shim, Eui-Bo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.70-77
    • /
    • 1998
  • The rise in pressure across the impeller blade of an axial flow fan depends on the angle of attack. At a low back pressure, the air volume will be large and the angle of attack is small. The gradual increase of the back pressure approached stall zone which is not stationary but travels blade to blade passage. In consequence, a region occurs around these blades with large vibration in the flow. To avoid these stall operation, the stall detector in the axial flow fans has been designed to detect stalling condition with a manometer or differential pressure switch by electric mechanism.

  • PDF

Optimal Design Analysis of Driving Link-Mechanism and Development of Control Performance Estimation Program for Unbalance Heavy-Load Elevation Driving System; (구동 링크기구 최적설계 분석 및 불균형 대부하 고저 구동/제어 성능추정 프로그램 개발)

  • 최근국;이만형;안태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.614-617
    • /
    • 1995
  • The unbalance heavy-load elevation driving systems are composed of rotating link-mechanism and hydraulic cylinder which actuates elevation and compensates the static unbalance moment of supporting mechanism. Control and compensation of gun driving is very difficult because these mechanism imply highly nonlinearities due to hydraulic fluid characteristics and mechanical rotation of link-mechanism. In this study, through the analysis of manufactured link-mechanism, the optimal link-mechanism design of the elevating system is suggested. Also to estimate the control performance of the unbalance heavy-load elevation servo-control driving system, modeling and simulation of the system are carried out. To prove the reliability of performance estimation program,simulation results are compared with the experimental results. Both results are similar, therefore this program will be helpful to study the control performance improvement of the system.

  • PDF

Numerical analysis for horizontal axis wind and tidal stream energy conversion turbine (수치해법을 이용한 풍력 및 조류발전용 수평축 터빈의 성능해석)

  • Lee, Juhyun;Kim, Donghwan;Park, Sewan;Lee, Hui-Beom;Park, Seon-Ho;Rhee, Shinhyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.165.1-165.1
    • /
    • 2011
  • In the present study, two numerical methods were developed and compared for the performance prediction of the horizontal axis energy conversion turbine. The Blade Element Momentum Theory was adopted, and the rotating reference frame method for Computational Fluid Dynamics solver was also used. Hybrid meshing was used for the complex geometry of turbines. The analysis results using each method were compared to figure out a better method for the performance prediction.

  • PDF

An Experimental Study on Ram Pressure and THD Performance of Pivoted Pad Thrust Bearing (피봇식 주력베어링의 선단압력과 THD성능에 관한 실험적 연구)

  • 박홍규;김경웅
    • Tribology and Lubricants
    • /
    • v.2 no.1
    • /
    • pp.61-68
    • /
    • 1986
  • Effects of the ram-pressure on the THD-performance of pivoted pad thrust bearings are investigated experimentally. A sector-shaped tilting pad thrust bearing and a rotating disk are used. Temperature distribution on the disk surface as well as on the pad surface, distribution of the pressure generated within the fluid film, and the film thickness are measured continuously in the circumferential direction after thermal equilibrium is established. The ram-pressure is proportional to the mean pressure of oil film and to the rotational speed of the disk and affects the maximum pressure and the pressure distribution. The temperature rise on the mating surface of the disc and the pad, contacting with the oil film, is proportional to to the bearing load and the disk speed. The ram-pressure and the temperature rise on the disk surface are dominant factors that affect the THD-performance of pivoted pad thrust bearings.

A flow characteristic of non-newtonian fluid in coutte flow of concentric cylinder (동심원통속의 Coutte flow에 있어서 비 Newton 유체의 유동특성)

  • 권혁칠;이성노;부전유사
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.109-114
    • /
    • 1992
  • The purpose of this study is to experimentally research the effects of polymer additives on turbulent transition of Couette flow between concentric cylinders when outer one is rotating and inner one is at rest; the diameter ratio being 0.2. Aqueous polymer solution generate the degradation phenomena in machine forming work, but this is not effected in about 10 minute at 5ppm. aqueous polymer solution testing. The Reynolds number, referred to the gap distance and rotation velocity of the outer cylinder, of turbulent transition is about 20000 for water flow. In the laminer region, the torque value is as same as theoretical one in the region of low Reynolds number, but becomes high with an increase in the Reynolds number. The polymer additives reduce the Reynolds number for turbulent transtition. In the turbulent region, the torque is remarkably reduced by the polymer additives, soluble polymer take down effect of turbulent transition boundary torque.

  • PDF

Calculating Dynamic Derivatives of Flight Vehicle with New Engineering Strategies

  • Mi, Baigang;Zhan, Hao;Chen, Baibing
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.175-185
    • /
    • 2017
  • This paper presents new differential methods for computing the combined and single dynamic stability derivatives of flight vehicle. Based on rigid dynamic mesh technique, the combined dynamic stability derivative can be achieved by imposing the aircraft pitching to the same angle of attack with two different pitching angular velocities and also translating it to the same additional angle of attack with two different rates of angle of attack. As a result, the acceleration derivative is identified. Moreover, the rotating reference frame is adopted to calculate the rotary derivatives when simulating the steady pull-up with different pitching angular velocities. Two configurations, the Hyper Ballistic Shape (HBS) and Finner missile model, are considered as evaluations and results of all the cases agree well with reference or experiment data. Compared to traditional ones, the new differential methods are of high efficiency and accuracy, and potential to be extended to the simulation of combined and single stability derivatives of directional and lateral.

Low Rayleigh Number Thermal Convection Between Two Horizontal Plates with Sinusoidal Temperature Distributions (정현적인 온도 분포를 갖는 두 수평 평판 사이에서의 작은 Rayleigh 수 열 대류)

  • 유주식;김용진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.145-152
    • /
    • 2001
  • Low Rayleigh number thermal convection in a fluid layer confined between two-infinite horizontal walls kept at spatially sinusoidal temperature distributions, T_L=T_m+\Delta T\sin \kappax,\;T_U=T_m+\Delta T\sin(\kappax-\beta)$, is theoretically investigated by a regular perturbation expansion method. For small wave numbers, an upright cell is formed between the two walls at $\beta$=0. The cell is tilted, as the phase difference increases, and a flow with tow counter-rotating eddies occurs at $\beta=\pi$. when the wave number is large, isolated eddies are formed near the lower and upper walls, for all the phase differences. There exists a wave number at which maximum heat transfer rate at the walls occurs, at each of the phase differences. And the wave number increases with increase of the phase difference. for a fixed wave number, the heat transfer rate decrease with increase of the phase difference.

  • PDF

Case History for Reduction of Shaft Vibration in a Steam Turbine

  • Kim, In Chul;Kim, Seung Bong;Jung, Jae Won;Kim, Seung Min
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.315-321
    • /
    • 2001
  • The shaft system of turbine is composed of rotating shaft, blades, bearings which support the shaft, packing seal which prevent the leakage of steam, and couplings which connect the shaft. Shaft system component failure, incorrect assemblage or deflection by unexpected forces causes vibration problem. And every turbine has its own characteristics in dynamic response. In this paper we propose the three-bearing supported type rotor which is real equipment and being operated this time as commercial operation. From 1996 it has a high vibration problem and there are many kinds of trial to solve this problem. In resent outage we performed a special diagnosis and carried out appropriate work. We would like to introduce and explain about this case history.

  • PDF

A Numerical Study on the Generation of Aeroacoustic Sound from Centrifugal Fans (청소기용 터보홴의 공력소음 발생에 관한 수치적 연구)

  • Jeon, Wan-Ho;Kim, Chang-Joon;Rew, Ho-Seon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.69-75
    • /
    • 2001
  • A new method to calculate the aeroacoustic pressure of a centrifugal fan was developed The fan consists of an impeller, diffuser and circular casing. Due to the high rotating velocity and the small gap between the impeller and diffuser, the centrifugal fan makes very high noise level at BPF and its harmonic frequencies. The aeroacoustic pressure is calculated acoustic analogy In this paper, only dipole term is considered in the equation. The acoustics generated by moving impeller and stationary diffuser is calculated separately. The unsteady flow field data is calculated by the vortex method The predicted acoustic pressure agrees very well to the measured data. The difference of the two is smaller than 3dBA.

  • PDF

Rarefied Gas Flows in Spiral Channels of a Disk-Type Drag Pump (원판형 드래그펌프내의 희박기체유동)

  • Hwang, Young-Kyu;Heo, Joons-Sik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.82-87
    • /
    • 2000
  • The direct simulation Monte Carlo (DSMC) method is applied to investigate the flow field of a disk-type drag pump. The pumping channels are cut on both sides of a rotating disk. The rotor has 10 Archimedes' spiral blades. In the present DSMC method, the variable hard sphere model is used as a molecular model, and the no time counter method is employed as a collision sampling technique. For simulation of diatomic gas flows, the Larsen-Borgnakke phenomenological model is adopted to redistribute the translational and internal energies.

  • PDF