• Title/Summary/Keyword: rotating blade

Search Result 450, Processing Time 0.023 seconds

VISCOUS FLOW CALCULATIONS OF HELICOPTER MAIN ROTOR SYSTEM IN FORWARD FLIGHT (전진 비행하는 헬리콥터 주로터 시스템의 점성 유동 해석)

  • Jung, M.S.;Kwon, O.J.;Kang, H.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.31-38
    • /
    • 2009
  • In the present study, viscous flow calculations of helicopter main rotor system in forward flight were made by using an unstructured hybrid mesh solver. Each rotating blade relative to the cartesian frame was simulated independently by adopting unstructured overset mesh technique. For the validation of the present method, calculations for the Caradonna-Tung non-lifting forward flight and the AH-1G main rotor system in forward flight were made. Additional computation was made for the UH-60A rotor in forward flight. Reasonable agreements were obtained between the present results and the experiment.

  • PDF

Suppression of Cavitation Instabilities in an Inducer by Circumferential Groove and Explanation of Higher Frequency Components

  • Kang, Dong-Hyuk;Arimoto, Yusuke;Yonezawa, Koichi;Horiguchi, Hironori;Kawata, Yutaka;Hah, Chunill;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.137-149
    • /
    • 2010
  • The purpose of the present research is to suppress cavitation instabilities by using a circumferential groove. The circumferential groove was designed based on CFD so that the tip leakage vortex is trapped by the groove and does not interact with the next blade. Experimental results show that the groove can suppress rotating cavitation, asymmetric cavitation and cavitation surge. However, weak instabilities with higher frequency could not be suppressed by the groove. From the analysis of pressure pattern similar to that for rotor-stator interaction, it was found that the higher frequency components are caused by the interaction of backflow vortices with the inducer blades.

Fan Noise Prediction Method of Air Cooling System (공기 냉각 시스템의 홴 소음 예측 기법)

  • Lee, Chan;Kil, Hyun-Gwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.952-960
    • /
    • 2008
  • Fan noise prediction method is presented for air conditioning, automobile and electronic cooling system applications where fan acts as an internal equipment having very complicated flow interaction with other various system components. The internal flow paths and distribution in the fan-applied systems such as computer or air conditioner are analyzed by using the FNM(flow network modeling). Fan noise prediction method comprises two models for the discrete frequency noise due to rotating steady aerodynamic lift and blade interaction and for the broadband noise due to turbulent boundary layer and wake vortex shedding. Based on the fan operation point predicted from the FNM analysis results and fan design parameters, the present far noise model predicts overall sound pressure level and spectrum. The predictions for the flow distribution, the fan operation and the noise level in air cooling system by the present method are well agreed with 3-D CFD and actual noise test results.

A Study on the Flow Characteristics in Axial Flow Rotors with Varying Tip Clearance (축류회전차에서 팁간극의 변화를 고려한 유동특성에 관한 연구)

  • 이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.353-361
    • /
    • 2002
  • The tip leakage flow passing through the clearance between rotor blade tip and casing shroud has been known to occupy an important portion of the rotor overall loss. In this study, flow characteristics in axial flow rotors with different tip clearances is investigated by experimental and numerical methods. The experimental study was carried out to measure static pressure and velocity profiles at the real rotating test rig. The axial flow rotors used for the experiments have ten blades and three different rotor diameter. The tip clearance heights are 1mm, 3mm, and 4.5mm. Measurements were done using spherical type five-hole probe by non-nulling method. The numerical study was carried out to calculate pressure distributions and velocity vectors at the same condition as the experiments in the flow fields of axial flow rotors using Phoenics code.

Wind tunnel effect analysis for MEXICO wind turbine model (MEXNEXT 풍력발전기 풍동 시험에 대한 풍동 영향 분석)

  • Shin, Hyungki;Lim, Jongsoo;Jang, Moonseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.59.1-59.1
    • /
    • 2011
  • In this research, CFD calculation was implemented to analyze wind tunnel effect or rotor experiment in wind tunnel. One case included model wind turbine and all wind tunnel geometries. The other case include only rotor and nacelle system. Star-CCM+ was used for CFD analysis and rigid body motion around rotor area was applied to simulate rotating rotor. As for turbulence model, K-omega SST was used. The results were compared in 15m/s inflow condition. These results shows a good agreement with the measurement. Then, the result without wind tunnel was slightly different to the result with wind tunnel. Thus, in the case of Mexnex wind tunnel measurement, the wind tunnel don't affect the measurement result. Then, this wind tunnel and rotor size ratio can be reference for wind tunnel experiment of wind turbine rotor.

  • PDF

Friction Welding of Dissimilar Press Punch Materials and Its Evaluation by AE (신소재 금형펀치의 이종재 마찰용접 개발과 AE품질평가를 위한 연구)

  • 오세규;박일동;이원석
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.43-53
    • /
    • 1997
  • The complete joining method for dissimilar press punch materials and its real-time evaluation method is not available at present. Brazing method has been used for joining them, but it is known that the welded joint by the brazing has the lower bonding efficiency and reliability than the diffusion welding. The friction welding with a diffusion mechanism in bonding was applied in this study. This work was carried out to determine the proper friction welding conditions and to analyze mechanical properties of friction welded joints of sintered carbide tool materials (SKNM50 for the blade part of press punch) to alloy steel (SCM440 for the shank part of press punch) using aluminum (A6061 for the interlayer material) as an insert material between the sintered carbide tool materials and the alloy steel. In addition, acoustic emission test was carried out during friction welding to evaluate the weld quality.

  • PDF

Design Program of impellers of Vacuum Cleaner (진공청소기 임펠러 설계 프로그램)

  • Ahn, K.-W.;Lee, S.;Baek, S.-J.;Kim, C.-J.;Jeon, W.-H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.54-60
    • /
    • 2001
  • In this research, we developed a computer code that designs a compressor impeller, which serves as an essential component of a vacuum cleaner, and predicted its performance. The TEIS model originally developed by Japikse(1985), and the mean line analysis m combined to design the centrifugal impeller optimally. In this program the inlet geometry is designed by using the mean line analysis, and with assumption of resonable exit blade angle, the optimal geometry is searched by means of TEIS model and iterative scheme. The performance of designed impeller was compared with experimental data, and the far-field noise by the rotating impeller is also predicted.

  • PDF

The Study on the Aeroacoustic Characteristics of an Axial Fan for an Air-Conditioner (공기조화기 축류팬의 공력소음 특성 연구)

  • Lee, Soo-Young;Han, Jae-Oh;Kim, Tae-Hun;Lee, Jai-Kwon;Jeon, Wan-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.205-208
    • /
    • 2006
  • This paper proposes a new computational aeroacoustics method for an axial fan analysis. The major aeroacoustic noise source of an outdoor air-conditioner is the axial fan. It was revealed that the dominant noise source is the aerodynamic interactions between the rotating blade and stationary orifice. Many researches were focused on the fan only case. However, it does not fit to a real outdoor unit of air-conditioner. Especially, the inlet part of the axial fan of real system case is complex and not uniform. So, in order to identify the dominant noise source of axial fan, full outdoor unit analysis is important. Transient CFD analysis of full system was performed by commercial CFD code - SC/Tetra. Dominant noise source of the system was calculated by commercial CFN code - FlowNoise. The results show that not only BPF peaks but also broadband noise are similar to the measured data.

  • PDF

Unsteady Flow Simulation of the Smart UAV Proprotor (스마트무인기 프롭로터 비정상 유동해석)

  • Choi, Seong-Wook;Kim, Jai-Moo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.415-421
    • /
    • 2006
  • The unsteady flow calculation around the proprotor of Smart UAV was conducted. Using the flight scenario of SUAV which composed of hover, transition, and airplane mode, the aerodynamic analysis of proprotor were performed for the variation of collective pitch, rpm, forward speed, and tilt angle. The unsteady compressible Navier-Stokes equations were used for the calculation and the dynamic overset grid technique was applied for the rotating proprotor. The aerodynamic performance of proprotor calculated in this way were validated by comparing with the performance data obtained from the blade element momentum method.

  • PDF

Numerical Study of the blade dynamics for a cross-flow turbine

  • Sato Yuko;Kawamura Tetuya
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.230-231
    • /
    • 2003
  • Two and three-dimensional flows around a cross-flow wind turbine are investigated by the numerical simulation. The turbine studied in this paper has cylindrical shape with many small blades along its periphery. Incompressible Navier-Stokes equation is used for this simulation. A rotating coordinate system, which rotates at the same speed of the turbine, is used in order to simplify the boundary conditions on the blades of the turbine. Additionally, a boundary fitted coordinate system is employed in order to express the shape of the blades precisely. A third order upwind scheme is chosen for the approximation of the non-linear terms. When the number of blades is about 10, the highest torque is obtained.

  • PDF