• Title/Summary/Keyword: rotating angle

Search Result 528, Processing Time 0.024 seconds

Effect of Convex Wall Curvature on Three-Dimensional Behavior of Film Cooling Jet

  • Lee, Sang-Woo;Lee, Joon-Sik;Keon Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1121-1136
    • /
    • 2002
  • The flow characteristics of film coolant issuing into turbulent boundary layer developing on a convex surface have been investigated by means of flow visualization and three-dimensional velocity measurement. The Schlieren optical system with a spark light source was adopted to visualize the jet trajectory injected at 35° and 90° inclination angles. A five-hole directional pressure probe was used to measure three-dimensional mean velocity components at the injection angle of 35°. Flow visualization shows that at the 90° injection, the jet flow is greatly changed near the jet exit due to strong interaction with the crossflow. On the other hand, the balance between radial pressure gradient and centrifugal force plays an important role to govern the jet flow at the 35° injection. The velocity measurement shows that at a velocity ratio of 0.5, the curvature stabilizes downstream flow, which results in weakening of the bound vortex structure. However, the injectant flow is separated from the convex wall gradually, and the bound vortex maintains its structure far downstream at a velocity ratio of 1.98 with two pairs of counter rotating vortices.

A Study on the Axial Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct (곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동분포에 관한연구)

  • 손현철
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.127-133
    • /
    • 2000
  • In the present study flow characteristics of turbulent pulsating flow in a square-sectional 180。 curved duct are investigated experimentally. in order to measure axial velocity and secondary flow distributions experimental studies for air flow are conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet(${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial velocity distributions of turbulent pulsating flow when the ratio of velocity amplitude(A1) is less than one there is hardly any velocity change in the section except near the wall and any change in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the vend angle of $150^{\circ}$ without regard to the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$ without regard to the ratio of velocity amplitude.

  • PDF

Abnormal Vibration of the Steam Turbine Shaft in 500 MW Class Coal-fired Power Plants (500 MW급 석탄화력발전소 증기터빈축 이상진동의 해결방안)

  • Ahn, Kwang-Min;Yoo, HoSeon
    • Plant Journal
    • /
    • v.13 no.1
    • /
    • pp.30-36
    • /
    • 2017
  • During the start-up of 500 MW class coal-fired power plant, abnormal shaft vibration was occurred on bearings installed on both side of high and intermediate pressure steam turbine. Shaft vibration was analyzed to investigate the reason and find the resolution, based on well-known theory in this study. Typical vibration characteristics which occur when rotating parts contact with stationary parts were observed at the analysis of frequency, amplitude and phase angle. The reason of abnormal vibration was assumed to be rub and internal parts wear was observed during repair period. As a result of applying low speed turning and balancing for resolution of abnormal vibration, balancing was more effective for rub removal. So balancing could be excellent resolution in the case of abnormal vibration which is similar to this study.

  • PDF

Fabrication of Pair-Photonic Crystal Arrays using Multiple-Exposure Nanosphere Lithography (다중노광 나노구 리소그라피를 이용한 쌍-광자결정 어레이 제작)

  • Yeo, Jong-Bin;Han, Gwang-Min;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.245-249
    • /
    • 2010
  • Two dimensional(2D) pair-photonic crystals (pair-PCs) have been fabricated by a multiple-exposure nanosphere lithography (MENSL) method using the self-assembled nanospheres as lens-mask patterns and the collimated laser beam as a multiple-exposing source. The arrays of the 2D pair-PCs exhibited variable lattice structures and shape the control of rotating angle (${\Theta}$), tilting angle (${\gamma}$) and the exposure conditions. In addition, the base period or filling factor of pair-PCs as well as their shapes could be changed by experimental conditions and nanosphere size. A 1.18-${\mu}m$-thick resist was spincoated on Si substrate and the multiple exposure was carried out at change of ${\gamma}$ and ${\Theta}$. Images of prepared 2D pair-PCs were observed by SEM. We believe that the MENSL method is a suitable useful tool to realize the pair-periodic arrays of large area.

Axial Direction Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct (곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동속도분포)

  • 손현철;이홍구;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.15-23
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in the square-sectional $180^{\circ}$curved duct are investigated experimentally. In order to measure axial direction velocity and secondary flow distributions, experimental studies for air flow are conducted in the square-sectional $180^{\circ}$curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet($\phi=0^{\circ}$) to the outlet($\phi=180^{\circ}$) at $30^{\circ}$intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial direction velocity distributions of turbulent pulsating flow, when the ratio of velocity amplitude (A1) is less than one, there is hardly any velocity change in the section except near the wall and in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the bend angle of $150^{\circ}$regardless of the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$without regard to the ratio of velocity amplitude.

  • PDF

Shear Process and Frictional Characteristics in Down-end Milling

  • Lee, Young-Moon;Jang, Seung-Il
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.19-24
    • /
    • 2003
  • In end milling process, which is characterized by the use of a rotating tool, the undeformed chip thickness varies periodically with phase change of the tool. Although many efforts have concentrated on the study of end milling process, the analysis of shear and chip-tool friction behaviors has not been reported. Recently, a model has been proposed to simulate the shear and friction characteristics of an up-end milling process in terms of the equivalent oblique cutting. In the current study, the varying undeformed chip thickness and the cutting forces in a down-end milling process are replaced with the equivalent ones of oblique cutting. Then it is possible to simulate the shear and the chip-tool friction characteristics of a down-end milling process. The proposed model has been verified through two sets of cutting tests i.e., down-end milling and the equivalent oblique cutting tests. The experimental results show that the proposed model is suitable to analyze the shear and chip-tool frictional characteristics of down-end milling process. The specific cutting energy decreases with increase in equivalent undeformed chip thickness in a down-end milling process.

L-Shaped Columellar Strut in East Asian Nasal Tip Plasty

  • Dhong, Eun-Sang;Kim, Yeon-Jun;Suh, Man Koon
    • Archives of Plastic Surgery
    • /
    • v.40 no.5
    • /
    • pp.616-620
    • /
    • 2013
  • Background Nasal tip support is an essential consideration for rhinoplasty in East Asians. There are many techniques to improve tip projection, and among them, the columellar strut is the most popular technique. However, the conventional design is less supportive for rotating the tip. The amount of harvestable septal cartilage is relatively small in East Asians. For an optimal outcome, we propose an L-shaped design for applying the columellar strut. Methods To evaluate the anthropometric outcomes, the change in nasal tip projection and the columella-labial angle were analyzed by comparing preoperative and postoperative photographs. The anthropometric study group consisted of 25 patients who underwent the same operative technique of an L-shaped strut graft using septal cartilage and were followed up for more than 9 months. Results There were statistically significant differences between the preoperative and postoperative values in the nasal tip projection ratio and columella-labial angle. We did not observe any complications directly related to the L-shaped columellar strut in the anthropometric study group. Conclusions The L-shaped columellar strut has advantages not only in the controlling of tip projection and rotation, but in that it needs a smaller amount of cartilage compared to the conventional septal extension graft. It can therefore be an alternative technique for nasal tip plasty when there is an insufficient amount of harvestable septal cartilage.

A Study on the Holographic Process for Photonic Crystal Fabrication (광자결정 제작을 위한 홀로그라피 공정 연구)

  • Yeo, Jong-Bin;Yun, Sang-Don;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.726-730
    • /
    • 2007
  • Two dimensional photonic crystals (2D PCs) have been fabricated by a double exposure holographic method using a He-Cd laser with a wavelength of 442nm. The arrays of the 2D PCs exhibit variable lattice structures from square to triangle according to a change of rotating angle $({\gamma})$ for double exposure beams. In addition, the period and filling factor of PCs as well as the forms (dot or antidot) could be controlled by experimental conditions. $A l.18-{\mu}m-thick$ resist was spin-coated on Si substrate and the 1st holographic exposure was carried out at incident angle $({\theta})$ of $11^{\circ}$. Then the sample was rotated to ${\gamma}=45^{\circ}{\sim}90^{\circ}$ and the 2nd holographic process was performed at ${\theta}=11^{\circ}$. The variation of diffraction efficiency during the exposure process was observed using a He-Ne laser in real time. The images of 2D PCs prepared were analyzed by SEM and AFM. We believe that the double holographic method is a tool suitable to realize the 2D PCs with a periodic array of large area.

Development of Twisted Rudder to Reduce Fuel Oil Consumption for Medium Size Container Ship (중형 컨테이너선의 연료절감형 비틀림 타 개발)

  • Chun, Ho-Hwan;Cha, Kyung-Jung;Lee, Inwon;Choi, Jung-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.169-177
    • /
    • 2018
  • Twisted rudder, twisted rudder with bulb, and twisted rudder with bulb and fin have been developed computationally for 3,000 TEU container ship through parametric study. The objective function is to minimize delivered power in model scale. Design variables are twisted angle, rudder bulb diameter and fin angle. The governing equation is Reynolds averaged Navier-Stokes equations in an unsteady turbulent flow and the Reynolds stress model applied for the turbulent closure. A double body model is used for the treatment of free-surface. The calculation was carried out in towing and self-propulsion conditions at design speed. The sliding mesh technique was employed to simulate the flow around the propeller. Form factor is obtained from the towing computation. Self-propulsion point is obtained from the self-propelled computations at two propeller rotating speeds. The delivered power due to the designed twisted rudder, twisted rudder with bulb, and twisted rudder with bulb and fin are reduced by 1.1%, 1.6%, and 2.0%, respectively.

Kinematic characteristics of the ankle joint and RPM during the supra maximal training in cycling (사이클링 초최대운동(Supra maximal training)시 RPM과 족관절의 운동학적 분석)

  • Lee, Yong-Woo
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.75-83
    • /
    • 2005
  • The purpose of this study was to determine the kinematic characteristics of the ankle joint and RPM(repetition per minutes) during the supra maximal training in cycling. For this study, 8 national representative cyclists, distance cyclists in track and road, were selected. During the super-maximum pedalling, kinematic data were collected using a six-camera(240Hz) Qualisys system. the room coordinate system was right-handed and fixed in the back of a roller for cycle, with right-handed orthogonal segment coordinate systems defined for the leg and foot. Lateral kinematic data were recorded at least for 3 minutes while the participants pedal on a roller. Two-dimensional Cartesian coordinates for each marker were determined at the time of recording using a nonlinear transformation technique. Coordinate data were low-pass filtered using a fourth-order Butterworth recursive filter with cutoff frequency of 15Hz. Variables analyzed in this study were compared using a one factor(time) ANOVA with repeated measures. The results of investigation suggest that the number of rotating pedal was decreased with time phase during the super-maximum pedaling. Maximum angle of the ankle joint showed little in change with time phase compared with minimum angle of that.