• Title/Summary/Keyword: rotating angle

Search Result 528, Processing Time 0.023 seconds

A study on establishing the aerodynamic database though the external flow method of a rotating vehicle (회전 운동하는 비행체의 외부 유동장 해석을 통한 공력데이터베이스 구축 연구)

  • Kang, Tae-Woo;Ahn, Jong-Moo;Lee, Hee-Rang;Choi, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.41-47
    • /
    • 2017
  • With the introduction of new technologies, ground weapons have led to the development of artificial intelligence and the attention of major developed countries. In this study, CFD was performed through the BLU-103 model to obtain aerodynamic data for aircraft that are subjected to rotational motion. To simulate the steady-state of a rotating body, the body was fixed and the principle of rotating the body by rotating the surrounding air was used. In order to examine the aerodynamic feasibility of the rotating aircraft, the analysis was carried out at intervals of $30^{\circ}$ angle from $0^{\circ}$ to $90^{\circ}$ for the simple shape and the side slip angle. It was confirmed that the drag coefficient for the simple model satisfies the quantitative results of 1.0 ~ 1.2 through CD presented in "Drag Book". The aerodynamic data was constructed by applying the valid input verified through the simple type analysis conditions to the actual shape, and the tendency was analyzed. The analysis confirmed that CX, CZ and CY increase not only in the simple model but also in the rotation of the actual model. Especially, the influence of CZ was judged to have contributed to the flight.

Analysis of Tilting Pad Journal Bearing Characteristics and Rotordynamics for Centrifugal Compressors Using Multiphysics Software (Multiphysics Software를 활용한 원심 압축기용 틸팅 패드 저널 베어링 특성과 회전체 동역학 분석)

  • Soyeon Moon;Jongwan Yun;Sangshin Park
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.268-272
    • /
    • 2023
  • This study explores the characteristics of tilting pad journal bearings used in the high-speed rotating shaft systems of centrifugal compressors. A centrifugal compressor is a high-speed rotating machine that is widely used to compress gases or vapors employed in various industrial applications. It transfers the centrifugal force of a fast-spinning impeller to the fluid and compresses it under high pressure. Many high-speed rotating shaft systems, which require high stability, use tilting pad journal bearings. The characteristics of these bearings can vary depending on several properties, and identifying the appropriate characteristics is essential to optimize the design on a case-to-case basis. In this study, the authors perform a time-dependent analysis of the properties of tilting pad journal bearings and the rotordynamics of the rotating shaft system using COMSOL Multiphysics software. Specifically, the authors analyze the characteristics of the tilting pad journal bearings by performing a parametric sweep using parameters such as pad clearance, maximum tilting angle, preload, number of pads, and pad pivot offset. The authors then use the results of the bearing-characteristics analysis to evaluate the vibration of the rotating shaft and verify its operation within a desirable range. The understanding gained from this study will allow us to determine the optimal properties of these bearings and the limiting operational speed using COMSOL Multiphysics software.

A Torque Angle Control of Permanent Magnet Synchronous Motors (영구자석 동기 전동기의 토오크 각 제어)

  • Choi, U.D.;Jung, M.K.;Lee, H.S.;Kim, M.C.
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.336-339
    • /
    • 1990
  • The permanent magnet synchronous motor windings are energized by sinusoidal excitation current. The frequency of the winding excitation current is synchronous with motor movement and the phase is a function of the motor position with respect to the stator. The total operational speed range of the system is substantially incresed by controlling the phase of the excitation currents at a function of the desired speed. This becomes the torque angle between stator rotating field and motor position. In this paper, torque angle control method is described for surface permanent magnet synchronous motor (SPMSM). The control circuit for realizing control method is investigated and the system test is carried out.

  • PDF

A Study on Development of Pinhead Forming Process using Hinge Belt Typed Chipconveyor for Machine Tools (공작기계용 힌지벨트형 칩컨베이어 핀헤드 성형공정 개발에 관한 연구)

  • Park, Dong-Geun;Choi, Chi-Hyuk;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.27-32
    • /
    • 2010
  • This paper presents an investigation into the pinhead forming process with the objective of finding the optimal forming conditions. In order to this, the orbital forming analysis of a heading MIG was carried out using the explicit finite element method. Relationships between temperature by forming of load and stresses, rake angle by forming final shape and stress distribution were investigated through analysises in order to find an efficient solution. As a result, the higher temperature and orbital rake angle were the better forming conditions.

Stall and Counter-measure for Large Size Axial-Flow Fan (대형축류팬의 실속과 대책)

  • Shim, Eui-Bo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.70-77
    • /
    • 1998
  • The rise in pressure across the impeller blade of an axial flow fan depends on the angle of attack. At a low back pressure, the air volume will be large and the angle of attack is small. The gradual increase of the back pressure approached stall zone which is not stationary but travels blade to blade passage. In consequence, a region occurs around these blades with large vibration in the flow. To avoid these stall operation, the stall detector in the axial flow fans has been designed to detect stalling condition with a manometer or differential pressure switch by electric mechanism.

  • PDF

Tilting Effect of Automotive Seat System on Squeak Noise (자동차 시트 틸팅 각도에 따른 기어박스 마찰소음 영향도)

  • Kang, Jae-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.577-582
    • /
    • 2010
  • The squeak propensity in the gear box of an automotive seat system is investigated analytically. The mating parts in the gear box are the lead screw and the nut, where the friction stresses are exerted on the thread of the screw. The lead screw is modeled as a circular beam allowing the bending and torsional vibrations. In the system, the lead screw converts rotating to translating motion so that it moves the automotive seat slightly tilted on the floor. The tilting angle is considered one major parameter in this study. Therefore, the equations of motion associated with the non-conservative friction force are derived with the inclusion of the tilting angle. It is found that the squeak noise corresponds to the several bending modes of the lead screw and its propensity is increased by the tilting angle of the seat.

Calculating Dynamic Derivatives of Flight Vehicle with New Engineering Strategies

  • Mi, Baigang;Zhan, Hao;Chen, Baibing
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.175-185
    • /
    • 2017
  • This paper presents new differential methods for computing the combined and single dynamic stability derivatives of flight vehicle. Based on rigid dynamic mesh technique, the combined dynamic stability derivative can be achieved by imposing the aircraft pitching to the same angle of attack with two different pitching angular velocities and also translating it to the same additional angle of attack with two different rates of angle of attack. As a result, the acceleration derivative is identified. Moreover, the rotating reference frame is adopted to calculate the rotary derivatives when simulating the steady pull-up with different pitching angular velocities. Two configurations, the Hyper Ballistic Shape (HBS) and Finner missile model, are considered as evaluations and results of all the cases agree well with reference or experiment data. Compared to traditional ones, the new differential methods are of high efficiency and accuracy, and potential to be extended to the simulation of combined and single stability derivatives of directional and lateral.

Optimal Configuration of a Liquid Ramjet Combustor using PIV Method (PIV측정을 통한 램제트 연소기의 최적 형상)

  • 손창현;김규남;문수연;이충원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.46-49
    • /
    • 2002
  • Three-dimensional flow characteristics in a liquid fuel ramjet combustor were investigated using the PIV method. The combustor has two rectangular inlets that loin a 90-degree angle each other. Three cases of test combustors are made in which those inlet angles are 30 degree, 45degree and 60 degree. The experiments were performed in a water tunnel test with the same Reynolds number as Mach 0.3 at the inlet. PIV software was developed to measure the characteristics of the flow field in the combustor. Accuracy of the developed PIV program was verified with a rotating disk experiment and standard data. The characteristics of the internal flows of the combustor are large swirling flows which appear symmetric with respect to the symmetric section. This is attributed to the fact that the flows introduced from the right and left intakes collide with each other, thus forming symmetrically large vortices. A large and complex three-dimensional recirculating flow was measured behind the intakes. An inlet angle of 30 degrees is the most suitable angle as a frame he]der in the performed experimental ranges.

  • PDF

Development of Gasoline Direct Swirl Injector III (직접분사식 가솔린 선회분사기 개발에 관한 연구 III)

  • Part, Young-Kug;Oh, Jae-Geon;Lee, Choong-Won
    • Journal of ILASS-Korea
    • /
    • v.6 no.4
    • /
    • pp.39-48
    • /
    • 2001
  • The Gasoline Direct Injection(GDI) system has been highlighted due to the improvement of fuel consumption and the control of exhaust emission from gasoline engines. Main purpose of the present study is to measure spray characteristics of GDSI for real engine application. We have investigated experimentally spray tip penetration, spray angle, tip velocity and spatial spray distribution. Counter-rotating vortex grown on the spray surface plays an important role in the spray characteristics. Accordingly the spray tip penetration and tip velocity do not excess 50mm, 20m/s respectively, under 0.6MPa ambient pressure. the spray cone angle of GDSI have a same tendency to a simplex swirl atomizer.

  • PDF

Flow Characteristics due to Cutoff angle of Turbo-Fan for Industries (산업용 Turbo형 송풍기의 Cutoff 각도에 따른 유동특성)

  • Yun, Ji-Hun;Jeong, In-Guk;Yi, Chung-Seob;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.91-96
    • /
    • 2011
  • This study aims to analyze the flow characteristics of turbo-fan which is applied to the industrial field. Numerical analysis has been carried out to investigate the pulsation behavior of exhaust air flown out turbo fan by rotating impeller with constant speed. Moving mesh technique is proved as time-accurate solution for the flow inside impeller. As numerical results come within the error range of 1% by comparing with theoretical results, the numerical analysis can be verified. Cutoff angle has large influence on the amplitude of pulsation and the least pulsation of flow can be generated by the cutoff angle of $20^{\circ}$.