Loading [MathJax]/jax/output/CommonHTML/jax.js
  • Title/Summary/Keyword: root structure

Search Result 750, Processing Time 0.024 seconds

Estimation Model for Freight of Container Ships using Deep Learning Method (딥러닝 기법을 활용한 컨테이너선 운임 예측 모델)

  • Kim, Donggyun;Choi, Jung-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.574-583
    • /
    • 2021
  • Predicting shipping markets is an important issue. Such predictions form the basis for decisions on investment methods, fleet formation methods, freight rates, etc., which greatly affect the profits and survival of a company. To this end, in this study, we propose a shipping freight rate prediction model for container ships using gated recurrent units (GRUs) and long short-term memory structure. The target of our freight rate prediction is the China Container Freight Index (CCFI), and CCFI data from March 2003 to May 2020 were used for training. The CCFI after June 2020 was first predicted according to each model and then compared and analyzed with the actual CCFI. For the experimental model, a total of six models were designed according to the hyperparameter settings. Additionally, the ARIMA model was included in the experiment for performance comparison with the traditional analysis method. The optimal model was selected based on two evaluation methods. The first evaluation method selects the model with the smallest average value of the root mean square error (RMSE) obtained by repeating each model 10 times. The second method selects the model with the lowest RMSE in all experiments. The experimental results revealed not only the improved accuracy of the deep learning model compared to the traditional time series prediction model, ARIMA, but also the contribution in enhancing the risk management ability of freight fluctuations through deep learning models. On the contrary, in the event of sudden changes in freight owing to the effects of external factors such as the Covid-19 pandemic, the accuracy of the forecasting model reduced. The GRU1 model recorded the lowest RMSE (69.55, 49.35) in both evaluation methods, and it was selected as the optimal model.

Airloads and Structural Loads Analysis of LCH Rotor Using a Loose CFD/CSD Coupling (유체-구조 연계해석을 통한 소형민수헬기(LCH) 공력 및 구조하중 해석)

  • Lee, Da-Woon;Kim, Kiro;Yee, Kwan-Jung;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.489-498
    • /
    • 2019
  • The airloads and structural loads of Light Civil Helicopter (LCH) rotor are investigated using a loose CFD/CSD coupling. The structural dynamics model for LCH 5-bladed rotor cwith elastomeric bearing and inter-bladed damper is constructed using CAMRAD-II. Either isolated rotor or rotor-fuselage model is used to identify the effect of the fuselage on the aeromechanics behavior at a cruise speed of 0.28. The fuselage effect is shown to be marginal on the aeromechanics predictions of LCH rotor, though the effect can be non-negligible for the tail structure due to the prevailing root vortices strengthened by the fuselage upwash. A lifting-line based comprehensive analysis is also conducted to verify the CFD/CSD coupled analysis. The comparison study shows that the comprehensive analysis predictions are generally in good agreements with CFD/CSD coupled results. However, the predicted comprehensive analysis results underestimate peak-to-peak values of blade section airloads and elastic motions due to the limitation of unsteady aerodynamic predictions. Particularly, significant discrepancies appear in the structural loads with apparent phase differences.

The Response of Hadley Cell and Jet Stream to Earth's Rotation Rate (지구 자전속도에 따른 해들리 순환과 제트의 반응)

  • Cho, Chonghyuk;Kim, Seo-Yeon;Son, Seok-Woo
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.203-211
    • /
    • 2019
  • The two key factors controlling the atmospheric general circulation are the equator-to-pole temperature difference and the Coriolis force driven by Earth's rotation. Although the former's role has been extensively examined, little has been reported about the latter's effect. To better understand the atmospheric general circulation, this study investigates the responses of Hadley Cell (HC) and westerly jet to the rotation faster or slower than the present Earth's rotation rate. It turns out that the HC edge and jet position tend to move equatorward and become weaker with increasing rotation rate. In most cases, the HC edge is quasi-linearly related with the jet position except for the extremely slow or fast rotating cases. The HC edge is more inversely proportional to the root of rotation rate than the rotation rate in the range of 1/8 to 8 times of the current Earth's rotation rate. However, such a relationship does not appear in the relationship between HC strength and jet intensity. This result highlights that while the latitudinal structure of atmospheric general circulation can be, to some extent, scaled with the Earth's rotation rate, overall intensity cannot be simply explained by the Earth's rotation rate.

Firing Condition, Source Area and Quantitative Analysis of Plain Coarse Pottery from the Unjeonri Bronze Age Relic Site, Cheonan, Korea (천안 운전리 청동기 유적지에서 출토된 무문토기의 정량분석, 산지 및 소성조건)

  • Choi, Seok-Won;Lee, Chan-Hee;Oh, Kuy-Jin;Lee, Hyo-Min;Lee, Myeong-Seong
    • Korean Journal of Heritage: History & Science
    • /
    • v.36
    • /
    • pp.267-297
    • /
    • 2003
  • The plain coarse pottery from the Unjeonri Bronze Age relic sites in the Cheonan, Korea were studied on the basis of clay mineralogy, geochemistry and archaegeological interpretations. For the research, the potteries are utilized at the analysis for 6 pieces of plain coarse potteries. Color of the these potteries are mainly light brown, partly shows the yellowish brown to reddish brown. The interior, surface and inside of the pottery appear as different colors in any cases. Original source materials making the Unjeonri potteries are used of mainly sandy clay soil with extreme coarse grained irregularly quartz and feldspar. The magnetic susceptibility of the Unjeonri pottery range from 0.20 to 1.20. And the Unjeonri soil's magnetic susceptibility agree almost with 0.20 to 1.30. In the same magnetization of soil and pottery, the results revealed that the Unjeonri soil and low material of pottery are same produced by identical source materials. The Unjeonri potteries and soil are very similar patterns with all characteristics of soil mineralogy, geochemical evolution trend. The result seems to be same relationships between the behavior and enrichment patterns on the basis of a compatible and a incompatible elements. Consequently, the Unjeonri potteries suggest that made the soil to be distributed in the circumstance of the relic sites as the raw material are high in a greater part. In the Unjeonri soil, the kaolinite is common occurred minerals. However, in the Unjeonri pottery, the kaolinite was not detected in all broken pieces. The kaolinite was presumed to destroy crystal structure during the firing processes of over 550C. The quartz is phase transition from α-quartz to β-quartz at 573C, but the Unjeonri pottery did not investigated any phase transition evidences of quartz. The chorite was detected within the mostly potteries and soils. As the results, the Unjeonri potteries can be interpreted by not experiencing a firing temperature over 800C. The colloidal and cementing materials between the quartz and low materials during the heating did not exist in the internal part of the potteries. An any secondary compounds by heating does not appear within the crack to happen during the dry of the pottery. The hyphae group are kept as it is with the root tissue of an organic matters to live in the swampy land. In the syntheses of all results, the general firing condition to bake and make the Unjeonri pottery is presumed from 550C to 800C. However, the firing condition making the Unjeonri pottery can be different firing temperature partially in one pottery. Even, the some part of the pottery does not take a direct influence on the fire.

HPLC Fractionation of Antioxidant Substances of E. hyemale Extract and Analysis of Indicator Components Using LC-MS (속새(Equisetum hyemale) 추출물의 항산화 물질의 HPLC 분획과 LC-MS를 이용한 지표성분 분석)

  • Song, Jin Hwa;Lee, Geo Lyong
    • Journal of Naturopathy
    • /
    • v.10 no.2
    • /
    • pp.108-113
    • /
    • 2021
  • Background: Results on the action of antioxidants in extracts of Equisetum hyemale stems and roots have already been reported, but the antioxidant properties have not been analyzed. Purpose: This study was to determine the molecular structure of antioxidants in substances extracted from E. hyemale stems and roots. Methods: Component analysis was analyzed by HPLC and LC-MS after extraction with hot water and ethyl alcohol. Results: The HPLC chromatogram of stem and root extracts showed four significant peaks at a wavelength of 205 nm. Peak 1 at 280 nm is a typical simple phenolic type, and both peaks 2-4 near 280 nm and 370 nm are typical flavonoid glycosides. As for the antioxidant level of the extract by HPLC analysis, the sum of the peaks at 740 nm was the highest at 3,669 mAU in the 100% ethanol extract, 3,096 mAU in the 70% ethanol extract, and 2,868 mAU in the hot water extract. As a result of LC-MS analysis of the antioxidant extract, kaempferol-3-sophoroside-7-glucoside with a molecular weight of 772 da at peak 3, and kaempferol-3-sophoroside-8-glucoside with a molecular weight of 788 and 772 at peak 4 was identified. Conclusions: The above results show that two types of antioxidants were identified in the antioxidant extract of E. hyemale exrtracts. Therefore, the potential as a raw material for functional cosmetics has increased.

A Study on Forecasting Industrial Land Considering Leading Economic Variable Using ARIMA-X (선행경제변수를 고려한 산업용지 수요예측 방법 연구)

  • Byun, Tae-Geun;Jang, Cheol-Soon;Kim, Seok-Yun;Choi, Sung-Hwan;Lee, Sang-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.214-223
    • /
    • 2022
  • The purpose of this study is to present a new industrial land demand prediction method that can consider external economic factors. The analysis model used ARIMA-X, which can consider exogenous variables. Exogenous variables are composed of macroeconomic variable, Business Survey Index, and Composite Economic Index variables to reflect the economic and industrial structure. And, among the exogenous variables, only variables that precede the supply of industrial land are used for prediction. Variables with precedence in the supply of industrial land were found to be import, private and government consumption expenditure, total capital formation, economic sentiment index, producer's shipment index, machinery for domestic demand and composite leading index. As a result of estimating the ARIMA-X model using these variables, the ARIMA-X(1,1,0) model including only the import was found to be statistically significant. The industrial land demand forecast predicted the industrial land from 2021 to 2030 by reflecting the scenario of change in import. As a result, the future demand for industrial land was predicted to increase by 1.91% annually to 1,030.79 km2. As a result of comparing these results with the existing exponential smoothing method, the results of this study were found to be more suitable than the existing models. It is expected to b available as a new industrial land forecasting model.

Impact of lattice versus solid structure of 3D-printed multiroot dental implants using Ti-6Al-4V: a preclinical pilot study

  • Lee, Jungwon;Li, Ling;Song, Hyun-Young;Son, Min-Jung;Lee, Yong-Moo;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.4
    • /
    • pp.338-350
    • /
    • 2022
  • Purpose: Various studies have investigated 3-dimensional (3D)-printed implants using Ti6Al-4V powder; however, multi-root 3D-printed implants have not been fully investigated. The purpose of this study was to explore the stability of multirooted 3D-printed implants with lattice and solid structures. The secondary outcomes were comparisons between the 2 types of 3D-printed implants in micro-computed tomographic and histological analyses. Methods: Lattice- and solid-type 3D-printed implants for the left and right mandibular third premolars in beagle dogs were fabricated. Four implants in each group were placed immediately following tooth extraction. Implant stability measurement and periapical X-rays were performed every 2 weeks for 12 weeks. Peri-implant bone volume/tissue volume (BV/TV) and bone mineral density (BMD) were measured by micro-computed tomography. Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were measured in histomorphometric analyses. Results: All 4 lattice-type 3D-printed implants survived. Three solid-type 3D-printed implants were removed before the planned sacrifice date due to implant mobility. A slight, gradual increase in implant stability values from implant surgery to 4 weeks after surgery was observed in the lattice-type 3D-printed implants. The marginal bone change of the surviving solid-type 3D-printed implant was approximately 5 mm, whereas the value was approximately 2 mm in the lattice-type 3D-printed implants. BV/TV and BMD in the lattice type 3D-printed implants were similar to those in the surviving solid-type implant. However, BIC and BAFO were lower in the surviving solid-type 3D-printed implant than in the lattice-type 3D-printed implants. Conclusions: Within the limits of this preclinical study, 3D-printed implants of double-rooted teeth showed high primary stability. However, 3D-printed implants with interlocking structures such as lattices might provide high secondary stability and successful osseointegration.

Path Algorithm for Maximum Tax-Relief in Maximum Profit Tax Problem of Multinational Corporation (다국적기업 최대이익 세금트리 문제의 최대 세금경감 경로 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.157-164
    • /
    • 2023
  • This paper suggests O(n2) polynomial time heuristic algorithm for corporate tax structure optimization problem that has been classified as NP-complete problem. The proposed algorithm constructs tax tree levels that the target holding company is located at root node of Level 1, and the tax code categories(Te) 1,4,3,2 are located in each level 2,3,4,5 sequentially. To find the maximum tax-relief path from source(S) to target(T), firstly we connect the minimum witholding tax rate minrw(u, v) arc of node u point of view for transfer the profit from u to v node. As a result we construct the spanning tree from all of the source nodes to a target node, and find the initial feasible solution. Nextly, we find the alternate path with minimum foreign tax rate minrfi(u, v) of v point of view. Finally we choose the minimum tax-relief path from of this two paths. The proposed heuristic algorithm performs better optimal results than linear programming and Tabu search method that is a kind of metaheuristic method.

Hybrid Structural Health Monitoring of Steel Plate-Girder Bridges using Acceleration-Impedance Features (가속도-임피던스 특성을 이용한 강판형교의 하이브리드 구조건전성 모니터링)

  • Hong, Dong-Soo;Do, Han-Sung;Na, Won-Bae;Kim, Jeong-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.61-73
    • /
    • 2009
  • In this paper, hybrid health monitoring techniques using acceleration-impedance features are newly proposed to detect two damage-type in steel plate-girder bridges, which are girder's stiffness-loss and support perturbation. The hybrid techniques mainly consists of three sequential phases: 1) to alarm the occurrence of damage in global manner, 2) to classify the alarmed damage into subsystems of the structure, and 3) to estimate the classified damage in detail using methods suitable for the subsystems. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the alarmed damage is classified into subsystems by recognizing patterns of impedance features. In the final phase, the location and the extent of damage are estimated by using modal strain energy-based damage index method and root mean square deviation (RMSD) method. The feasibility of the proposed hybrid technique is evaluated on a laboratory-scaled steel plate-girder bridge model for which hybrid acceleration-impedance signatures were measured for several damage scenarios. Also, the effect of temperature on the accuracy of the impedance-based damage monitoring results are experimentally examined from combined scenarios of support damage cases and temperature changes.

A Study on the Quality of Healthcare Services for Four Critical Illnesses and the Maintenance of Right to Protection and Dignity in a Senior General Hospital (상급종합병원의 4대 중증질환 의료 서비스 품질과 보호받을 권리 및 존엄성 유지에 관한 연구)

  • Woojin Lee;Minsuk Shin
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.531-550
    • /
    • 2023
  • Purpose: The unique nature of life-and-death healthcare services sets them apart from other service industries. While many studies exist on the relationship between healthcare services and customer satisfaction, most of them focus on mildly ill patients, ignoring the differences between critically ill and non-seriously ill patients. This study discusses the actual quality of healthcare services for patients who are facing life-threatening illnesses and are on life support, as well as their right to protection and dignity. Methods: The survey conducted to 149 patients with the four major illnesses: cancer, heart disease, brain disease and rare and incurable disease, those who have experiences with senior general hospitals. Results: The basic statistics of this study are adequate to represent the four major critical illnesses, and the reliability and validity of this study's hypotheses, which were measured by multiple items, were analyzed, and the internal consistency was judged to be high. In addition, it was found that the convergent validity was good and the discriminant validity was also secured. When examining the goodness of fit of the hypotheses, the SRMR, which is the standardized root mean square of residuals that measures the difference between the covariance matrix of the data variables and the theoretical covariance matrix structure of the model, met the optimal criteria. Conclusion: The academic implications of this study are differentiated from other studies by moving away from evaluating the quality of healthcare services for mildly ill patients and focusing on the rights and dignity of patients with life-threatening illnesses in four senior general hospitals. In terms of academic implications, this study enriches the depth of related studies by demonstrating the right to protection and dignity as a factor of patient-centeredness based on physical environment quality, interaction quality, and outcome quality, which are presented as sub-factors of healthcare quality. We found that the three quality factors classified by Brady and Cronin (2001) are optimized for healthcare quality assessment and management, and that the results of patients' interaction quality assessment can be used to provide a comprehensive quality rating for hospitals. Health and human rights are inextricably linked, so assessing the degree to which rights and dignity are protected can be a superior and more comprehensive measurement tool than traditional health level measures for healthcare organizations. Practical implications: Improving the quality of the physical environment and the quality of outcomes is an important challenge for hospital managers who attract patients with life and death conditions, but given the scale and economics of time, money, and human inputs, improving the quality of interactions and defining them as performance indicators in hospital quality management is an efficient way to create maximum value in the short term.