• Title/Summary/Keyword: root media

Search Result 502, Processing Time 0.037 seconds

Effect of Root Media Formulation and Fertilizer Application on Potato Plug Seedling Growth and Field Performance

  • Kang, Bong-Kyoon;Kang, Young-Kil;Kang, Si-Yong;Park, Yang-Mun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.125-129
    • /
    • 2001
  • Eight vermiculite-based root media prepared with addition of complete fertilizer (2 g/L; N-$P_2$$O_5$-$K_2$O, 10-10-14) for potatoes (Solanum tuberosum L.) and a commercial root medium were evaluated in 2000 to develop the root media suitable for potato plug seedling production. The eight media consisted of various ratios of vermiculite, perlite, peatmoss, and compost. In addition, four rates (0, 1, 2, or 4 g/L) of the complex fertilizer for potato were added to a root medium (70% vermiculite, 10% perlite, 10% peat moss, and 10% compost by volume) to determine the optimum addition rate of the complex fertilizer for plug seedlings. Compost addition to the media increased plant height, the number of leaves per plant, and top and root fresh weight of 15-day old plug seedlings. The seedlings raised in root media containing compost produced significantly higher total tuber yield. Addition of the complex fertilizer to root media enhanced seedling growth and increased the number of tubers per plant and tuber yields. The results suggest that root media containing 50% vermiculite, 0 to 20% peat moss, 10% perlite, 20 to 40% compost, and 2 g/L complex fertilizer for potato appear suitable for potato plug seedling production.

  • PDF

Changes in Physico-chemical Properties of Moss Peat Based Root Media and Growth of Potted Chrysanthemums as Influenced by Blending Ratios of Root Media in a C-channel Mat Irrigation System

  • Kang, Seung-Won;Hong, Jong-Won;Lee, Gung-Pyo;Seo, Sang-Gyu;Pak, Chun-Ho
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.201-210
    • /
    • 2011
  • This experiment was conducted to investigate physical and chemical characteristics by volume fractions of root media using peatmoss, perlite, and vermiculite, along with effects on the growth of pot chrysanthemums (Dendranthema ${\times}$ grandiflorum 'Vemini') in a C-channel mat irrigation system. To evaluate the physico-chemical properties of 20 root media, the bulk density, particle density, total pore space, pore space, ash content, organic matter, pH, and electrical conductivity were measured and data were analyzed using principal component analysis (PCA). PCA scores revealed that physico-chemical properties changed by the blending of peatmoss, perlite, and vermiculite. The 20 root media were divided into three main groups by hierarchical cluster analysis. At the end of the experiment, the pH and EC of the root media were measured from media divided into four layers. The pH of root media without plants showed a strong linear relationship and the pH of root media with plants increased exponentially. The change of EC in the root medium was indicated as a hyperbolic curve. Plant growth characteristics according to growth in the 20 root media were analyzed by PCA. It was found that the mixing ratios of the root media affected plant growth characteristics. Therefore, mixing ratio is an important factor for pot-plant production in a subirrigation system.

Effects of Media and Growth Regulators on the Growth and Saponin Production of Ginseng Root (인삼 Root의 생장 및 사포닌 생성에 미치는 배지와 생장조절물질의 영향)

  • 김정혜;장은정;오훈일
    • Journal of Ginseng Research
    • /
    • v.25 no.3
    • /
    • pp.130-135
    • /
    • 2001
  • Effects of media and growth regulators on the growth and saponin accumulation of ginseng root were investigated to develop the ginseng root culture system. When Panax ginseng C. A. Meyer roots were induced and cultured in various liquid media, the maximum root growth and saponin production were obtained in SH medium and an initial doubleing time of ginseng root was approximately 10 days. The patterns and contents of ginsenosides of cultured ginseng root in various media were different from each other. SH and White media resulted in higher total ginsenosides contents than the other media. Among different combinations and concentrations of growth regulators, SH medium containing 4.0mg/ L NAA gave best growth of ginseng roots, while saponin content was highest in SH medium containing 0.5mg/L BAP. These results suggested that the rapid production of ginseng saponin is possible by root culture of Panax ginseng.

  • PDF

Influence of pre-planting application of dolomite at various rates in coir-dust containing root media on the growth of red-leaf lettuce

  • Kim, Chang Hyeon;Choi, Jong Myung
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.2
    • /
    • pp.176-185
    • /
    • 2016
  • This research was conducted to evaluate various levels of dolomitic lime incorporated as pre-planting fertilizers on the growth of red-leaf lettuce. To achieve this, three root media were formulated by mixing coir dust with expanded rice hull (CD+ERH, 8:2, v/v), carbonized rice hull (CD+CRH, 6:4, v/v), and ground pine bark (CD+GRPB, 6:4, v/v). During formulation, equal amounts of essential nutrients, except dolomitic lime, were incorporated into all root media and the levels of dolomitic lime were varied from 0 to $7.5g\;L^{-1}$ at 1.5 g increments. Seedlings of red-leaf lettuces at the 3rd leaf stage were transplanted into each medium treatment. Crop growths were measured 5 weeks after transplant and soil solutions were collected every week and analyzed for pH, EC, and nutrient concentrations. The treatments showing the heaviest fresh and dry weights in CD+ERH, CD+CRH, and CD+GRPB were 4.5 g, 4.5 g, and $7.5g\;L^{-1}$ of dolomite, respectively. The pHs of three root media yielding the highest crop growths were in the ranges of 6.4 to 7.1. These ECs in CD+CRH medium were around $1.0dS\;m^{-1}$ higher than those of CD+ERH and CD+GRPB when application rates of dolomitic lime were equal. $K^+$ concentrations were higher than $Ca^{+2}$ and $Mg^{+2}$ concentrations until week 2 in three root media. But $Ca^{+2}$ and $Mg^{+2}$ concentrations were higher than $K^+$ concentrations after week 3 in all root media. The concentrations of $PO_4{^{-3}}$ in all root media got abruptly lower until week 2. These results indicate that appropriate levels of dolomitic lime, as pre-planting nutrient charge fertilizers in CD+ERH and CD+GRPB media, are 4.5 and $7.5g\;L^{-1}$, respectively.

Influence of Rice-Root-Nematode(Hirschmanniella aryzae) on the Root Browning of Rice (벼뿌리의 갈변에 미치는 벼뿌리선충의 영향)

  • Lee Young-Bae;Park Jung-Soo
    • Korean journal of applied entomology
    • /
    • v.14 no.1 s.22
    • /
    • pp.35-36
    • /
    • 1975
  • An experiment was carried out to know bow the rice root nematode, Hirschmanniella cryzae affects the root browning of rice pant growing in various combinations of media. In sterilized conditions of growing media, the root browning of rice plant was slightly promoted by the presence of the rice root nematode, while the entire roots were stained to brown in nonsterilized conditions of growing media. It seems that the root browning is due mainly to soil micro-organisms other than nematode which promotes it slightly under sterilized conditions.

  • PDF

A Study on the Use of Fresh Root-chips in Slope Revegetation Works (비탈면 녹화에서 임목폐기물의 활용에 관한 연구)

  • Kim, Nam-Choon;Lee, Jung-Ho;Lee, Tae-Ok;Heo, Young-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.4
    • /
    • pp.119-128
    • /
    • 2008
  • In this study, we attempted to seek out the ways to recycle fresh root-chips in the slope revegetation works by breaking tree root wastes occurring during the construction works, also to review the applicability of fresh root-chips as the soil media in slope revegetation works. For this purpose, we organized test units in order to investigate on-site applicability of fresh root-chips (broken chips). In order to examine the desirable ration of combining fresh root-chips with the hydroseeding soil media on the cutting slopes, we organized test units depending on the amount of combination. The following is the main experimental results. 1. At first, we analyzed properties of hrdro-seeding soil media and soil of the experimental sites. The overall results demonstrate that all the test units show proper range for vegetation. 2. We believe that the physical properties of soils in the earlier phase of restoration works on the sloped sites are not greatly affected by the fact whether broken chips exist or not. However, as time elapses, broken chips needs to be investigated further on what kind of impact they have on the soil condition. 3. More species are found in the test unit combining broken chips and we believe that it will contribute to blossoming of green plants and ecological succession of neighboring plants. 4. We performed experiment on possibility for fresh root-chips as substitutes for the hydro-seeding soil-media. In the test unit that combines fresh root-chips, its mixture ratio tends to exceed that of the test unit that does not combine fresh root-chips by 5 %. In case of the Thick-Layer-Soil-Media Hydroseeding works, the mixture ratio of the test unit that combines fresh root-chips after 16 weeks exceeds that of the test unit that does not combine fresh root-chips by 75%. 5. From the result of our experiment, it is obvious that the ratio of mixture and the number of emerging species are higher for the test unit combining fresh root-chips than the test unit that does not combine them. In other words, we can replace the hydro-seeding-soil-media with some Fresh root-chips without affecting the physical property of soil.

Changes in Soil Physical Properties in Various Sizes of Container as Influenced by Packing Amount of Coir Dust Containing Root Media (다양한 규격의 포트에서 코이어더스트를 포함한 혼합상토의 충전밀도 차이에 의해 유발된 물리성 변화)

  • Park, Eun Young;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.720-725
    • /
    • 2013
  • When highly shrinkable materials such as coir dust are major component of root media, the degrees of compaction during container filling of root media severely influences the physical properties of root media. It results in the changes in total porosity (TP), container capacity (CC) and air-filled porosity (AFP). This research was conducted to secure the fundamental information in changes of soil physical properties as influenced by the compaction of root media during container filling. To achieve this, three root media were formulated by blending coir dust (CD) with expanded rice hull (CD + ERH, 8:2, v/v), carbonized rice hull (CD + CRH, 6:4) and ground and raw pine bark (CD + GRPB, 8:2). Based on the optimum bulk density, the amount of root media filled into 6.0, 7.5, 8.5, 10.5 and 12.5 cm were adjusted to 90, 100, 110, 120 and 130% based on the weight of root media. Then the changes in TP, CC, and AFP were measured. Elevation of the packing amount of root media in all sizes of pot resulted in the decrease of TP. But the decrease was more severe in CD + ERH and CD + CRH than those in CD + GRPB. The CC also decreased gradually as the packing amounts were elevated in three root media, but the decreases were severe as the container sizes became larger. The AFP decreased drastically by the elevation of the packing amount of root media in all sizes of pot. The AFP was the highest in CD + CRH medium when pot sizes were smaller than 7 cm, but that was the highest in CD + ERH when the pot sizes were larger than 8.5 cm among the 3 root media tested. In this research, the elevation of packing amount of three root media influenced more severely the AFP rather than CC. This result indicates that the packing amount should be controlled to maintain appropriate level of AFP because AFP rather than CC influence severely crop growth. The results obtained through this study can be used to predict the changes in physical properties of root media as influenced by packing amount in various sizes of pots.

Changes in Soil Physical Properties of Peatmoss Containing Root Media as Influenced by Container Size and Packing Density (용기 크기와 충전밀도 차이에 따른 피트모스 혼합상토의 물리성 변화)

  • Park, Eun Young;Choi, Jong Myung;Lee, Dong Hoon
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.558-564
    • /
    • 2013
  • The objective of this research was to secure the fundamental information in changes of soil physical properties as influenced by the compaction of root media during container filling. Three root media were formulated by blending peatmoss (PM) with expanded rice hull (PM + ERH, 8:2, v/v), carbonized rice hull (PM + CRH, 6:4) and ground and aged pine bark (PM + GAPB, 8:2). Based on the optimum bulk density, the amount of root media filled into 6.0, 7.5, 8.5, 10.5 and 12.5 cm were adjusted to 90, 100, 110, 120, and 130%, then the changes in total porosity (TP), container capacity (CC), and air-filled porosity (AFP) were measured. The TP decreased significantly as the packing amount of three root media were elevated in all sizes of container. The TP did not show significant differences among the root media in small sizes of containers, but showed significant differences when sizes of containers became larger. As packing amount of three root media were elevated, the CCs in all sizes of containers were decreased. The PM + CRH had the lowest CC among three root media in containers smaller than 8.5 cm, but had the highest CC in those larger than 10.5 cm. These results indicated that the decreases in CC were influenced by the sizes of containers as well as kinds of root media. The elevation of packing amount in three root media diminished significantly the AFP. The AFP in PM + GAPB medium was two times as high as those of PM + ERH or PM + CRH when equal packing densities were applied in all sizes of containers. As the container sizes became larger in three root media, the extents in decreasing of CC were distinct than those of AFP. Above results indicate that elevation in packing amount of three root media decreased significantly the TP, CC and AFP, but these were influenced differently by sizes of containers and kinds of root media. The results would be useful for expectation in the changes of physical properties in various sizes of containers filled with peatmoss based root media.

Production of Tropane Alkaloids by Two-stage Culture of Scopolia parviflora Nakai Adventitious Root

  • Kim, Won-Jung;Jung, Hee-Young;Min, Ji-Yun;Chung, Young-Gwan;Lee, Cheol-Ho;Choi, Myung-Suk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.5
    • /
    • pp.372-377
    • /
    • 2004
  • Scopolia parviflora Nakai, a rare and endangered species, is the sole plant producing tropane alkaloids (TA) among the Korean native species. In order to enhance TA productivity the SP72 root line was selected by screening 100 of root line, and the optimal culture media for root growth and TA production were investigated with the SP72 roots. Based on the several media, SH and 2B5 medium were determined as growth medium and White and NN medium as production medium. Among the four combinations of two-stage culture, 2BN (2B5 as growth medium plus NN as production medium) showed more enhanced root growth and TA production as compared with production media of White and NN medium and growth media of SH and 2B5 medium, respectively. However, bubble column bioreactor (BCB) cultures applying two-stage culture did not reveal the effective results despite of the each successful operation of two-stage culture in conical flasks and BCB cultures.

Aluminum Tolerance in Pine Root Growth (소나무속 식물의 뿌리생장에 대한 알루미늄 내성)

  • Ryu, Hoon;Joon-Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.19 no.1
    • /
    • pp.36-46
    • /
    • 1996
  • Variation of Al tolerance in Pinus densiflora, P. rigida and P. thunbergii was investigated in a solution culture. Root length decreased as Al concentration increased, and decreased more in dilute culture media than in dense one. Aluminum tolerance based on relative root length was in the order of P. rigida > P. densiflora > P. thunbergii. Al content in tissue increased as Al concentration of the media increased, but the reverse was true for content of Ca and Mg. Al tolerance for root length showed intraspecific variation, even under the same Al concentration in the media.

  • PDF