• Title/Summary/Keyword: root exudation materials

Search Result 2, Processing Time 0.021 seconds

Histological and Cytological Changes Associated with Susceptible and Resistant Responses of Chili Pepper Root and Stem to Phytophthora capsici Infection

  • Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • Microscopic study of chili pepper (Capsicum annuum L.) infected with Phytophthora capsici, causing Phytophthora blight of chili pepper, was conducted to compare histological and cytological characteristics in the root and stem of susceptible (C. annuum cv. Bugang) and resistant (C. annuum cv. CM334) pepper cultivars. The susceptible pepper roots and stems were extensively penetrated and invaded by the pathogen initially into epidermal cells and later cortical and vascular cells. Host cell walls adjacent to and invaded by the infecting hyphae were partially dissolved and structurally loosened with fine fibrillar materials probably by cell wall-degrading enzymes of the pathogen. In the resistant pepper, the pathogen remained on root epidermal surface at one day after inoculation, embedded and captured in root exudation materials composed of proteins and polysaccharides. Also the pathogen appeared to be blocked in its progression at the early infection stages by thickened middle lamellae. At 3 days after inoculation, the oomycete hyphae were still confined to epidermal cells of the root and at most outer peripheral cortical cells of the stem, resulting from their invasion blocked by wound periderms formed underneath the infection sites and/or cell wall appositions bounding the hyphal protrusions. All of these aspects suggest that limitation of disease development in the resistant pepper may be due to the inhibition of the pathogen penetration, infection, invasion, and colonization by the defense structures such as root exudation materials, thickened middle lamellae, wound peridems and cell wall appositions.

Low Molecular Weight Organic Acids in Brassica pekinensis Rupr. and Growing soil Influenced by Simulated Nitrate Deposition

  • Xie, Wen-Ming;Liu, Xing-Quan;Ko, Kwang-Yong;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.279-284
    • /
    • 2008
  • We investigated whether carboxylate exudation of Brassica pekinensis Rupr. was affected by nitrate deposition from simulated acid rain. A gas chromatographic (GC) analysis was employed for the determination of low molecular weight organic acids (LOA) in rhizosphere soils, bulk soil, roots and leaves of Brassica pekinensis Rupr.. Rhizosphere soils were collected after 8 weeks of plant growth by first removing the bulk soil from the root system and then by mechanical move off the rhizosphere soil that adhered to the root surface with soft brush. Soil and plant materials were simultaneously extracted with the mixture of methanol and sulfuric acid (100:7, v/v). Seven organic acids, oxalic, malonic, fumaric, succinic, maleic, L-malic and citric acid were identified and quantified by GC equipped with FID. Oxalic, L-malic, and citric acids were found in both the bulk and rhizosphere soils, while most LOAs were not detected in the control treatment. On the contrary, except maleic acid, all other organic acids were detected in the leaves and roots of cabbages treated with nitrate deposition.