• Title/Summary/Keyword: root dry matter

Search Result 227, Processing Time 0.026 seconds

Evaluationof Phosphorus Rateand Mixing Depthonthe Growthand Establishment of Kentucky bluegrass(Poapratensis L.) in Sand-Based Systems (모래 조건에서 캔터키블루그래스의 생장과 정착에 대한 인산의 양과 혼합 깊이가 미치는 영향)

  • Lee, Sang-Kook;Minner, David D.;Nick E., Christians;Taber, Henry G.
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.353-360
    • /
    • 2009
  • Phosphorus (P) is one of the essential elements of the phospholipids that are involved in the formation of plant cell membranes. Phosphorus is highly immobile in soils and is often a limiting nutrient for plant growth. Phosphorus mobility and availability varies with several factors such as application frequency, placement in the soil, and the amount of irrigation or precipitation. This study was conducted to evaluate the effect of P applications at level of 0, 146, and 293 $kg{\cdot}ha^{-1}$ at four mixing depths (0, 7.6, 15.2, and 22.9 cm )on the growth and establishment of Kentucky bluegrass (Poapratensis L.) in a sand-based system.Grass clipping samples were collectedevery two weeks, dried, and weighed. Total root dry weight, root organic matter, and tissue content of P were measured at the end of the study. Leachate was collected weekly and analyzed for total P concentration. No difference was found between application of P to the surface and to the 7.6 cm mixing depth. However, surface application with 146 and 293 kg $P{\cdot}ha^{-1}$ produced 8-10% and 16-20% more P in tissue than subsurface applications, respectively.

Effect of Gamma Rays on the Growth Performance of Bangladesh Clone Tea

  • Ali, M. Aslam;Samad, M. A.;Amin, M. K.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.66-70
    • /
    • 2005
  • The experiment was carried out to investigate the effects of gamma radiation on the early growth performance and physiological traits of BT2 clone tea, the most promising cultivar released by Bangladesh Tea Research Institute. The fresh shoot cuttings were irradiated with seven different levels of gamma radiation such as 0, 10, 20, 30, 40, 50 and 60 Gy from Cobalt 60Co source (Dept. of PlantBreeding, Bangladesh Institute of Nuclear Agriculture). Thereafter, the irradiated shoot cuttings were planted in polythene bags and kept under natural conditions. It was observed that callusing was initiated from 8th weeks after placement of tea shoot cuttings in the polythene bags and completed by 12th weeks. The morphological growth of tea shoot cuttings were recorded under varying levels of gamma radiation and growth stages. It was observed that the number of leaves, number of primary branches, base diameter, root length and total leaf area per plant significantly increased with the progress of time and increasing levels of gamma radiation, however, the plant height showed decreasing trend with the increasing levels of gamma radiation, which could be due to the change in chromosomal structure and genetic makeup. After 56 weeks of planting, the plant height, the number of leaves and primary branches per plant, base diameter, root length and total leaf area per plant recorded were 65.70 cm, 30.67, 7.33, 1.48 cm, 23.50 cm, and 1250.67 cm2 per plant respectively under the radiation level 60 Gy, whereas the corresponding figures of the above parameters at the control treatment were 76.21 cm, 18.33, 3.67, 0.92 cm, 17.75 cm and 778.33 cm2 per plant, respectively. A significant relationship was observed among the physiological growth parameters with the increasing levels of gamma radiation. The total dry matter gain, leaf area index, absolute growth rate and relative growth rate were significantly influenced with the rising levels of gamma radiation (up to 60 Gy), whereas the net assimilation rate of individual tea plant non-significantly responded as compared to those of control treatment. Finally after 56 weeks of planting, the maximum total dry weight gain, leaf area index, absolute growth rate, relative growth rate and net assimilation rate recorded under 60 Gay radiation level were 40.25 g/plant/week, 4.25, 1.18 g/week, 0.0621g/g/week and 17.07 g/m2/week respectively.

Growth Characteristics of Lettuce under Low Pressure (저압조건에서 상추의 생육 특성)

  • Park, Jong-Hyun;Kim, Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.303-308
    • /
    • 2009
  • This study was conducted to analyze the feasibility of plant growth under low pressure and to investigate the effect of pressure on plant growth. Three levels of pressures (25, 50, and 101.3 kPa (control)) were provided to analyze the growth of Lettuce (Lactuca sativa L.) as affected by low pressure. Photoperiod, air temperature, and photosynthetic photon flux were set at 16/8 h, 26/$18^{\circ}C$, and $240{\mu}mol{\cdot}m^{-2}s^{-1}$, respectively. Growth characteristics of lettuce were measured on 7 days and 14 days after experiment. Leaf length, leaf width, leaf area, and root dry weight of lettuce measured on 7 days under 25 and 50 kPa were significant as compared to the control. Leaf length, top dry matter and root dry matter of lettuce measured on 14 days were significantly different under 25 and 50 kPa. From these results, we confirmed that lettuce could be grown under low pressure. However high relative humidity by evapotranspiration from leaves and growing beds under low pressure caused the condensation on the inner surface of the chamber. Therefore in a low pressure chamber, humidity control is required to maintain the relative humidity at a proper level.

Effect of Granular Fused Magnesium Phosphate on Growth and Yield of Barley (대맥(大麥)에 대(對)한 입상용성인비(粒狀熔成燐肥)의 입도별(粒度別) 비효)

  • Lee, Jong-Ho;Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.4
    • /
    • pp.210-214
    • /
    • 1982
  • A field experiment to compare the effects of different granular sizes of fused magnesium phosphate (FMP) on the growth and yield of barley plants was conducted on a loam soil during the 1978/1979 cropping period. The results were summarized as follows: 1. No significant differences in yield were observed between the application of comercial FMP, mixture of large and small granules, and small granular FMP; however, the smaller FMP application increased the yield of barley by 5 percent than the larger FMP application. 2. The fresh root weight and the total dry matter were greater in the smaller granular FMP, and the yield showed a linear relationship with the fresh root weight.

  • PDF

On the Growth of the Surface Area of Isolated Young Trees, Alnus tinctoria Sargent (산오리나무 고립목의 표면적성장에 대하여)

  • 임양재
    • Journal of Plant Biology
    • /
    • v.16 no.1_2
    • /
    • pp.1-5
    • /
    • 1973
  • Six young trees of Alnus tinctoria grown in isolation, each having different growing stage, were selected and the surface area of their roots, stems and leaves was determined. Each of the roots of more than 0.2mm in diameter and stems was cut at intervals of 10cm and their surface area was calculated with 2$\pi$rl from the average diameter (2r) of both sections (upper and lower) by making cylindrical estimation of the cut pieces. The leaf area measured was only one side area, and the volume of cut piece and amount of dry matter of each organ were also measured. The percentage to the surface area of the whole plant body by each organ was 4-12% in root, 7-9% in stem and 69-89% in leaf, respectively. There was relatively a little individual difference. However, the surface area ratios of root and stem showed a slightly increasing tendency while that of leaf decreasing according to the growing stage. The ratio of sum leaf area index (LAIi) was 2.3-4.0$m^2$/$m^2$-and that of the surface area index(SaIi) was 0.16-0.33$m^2$/$m^2$, respectively. It has been known that the stem surface area(SAI) to the leaf area index(LAI) is within the range of 31-53%, but the SAIi is within the range of 8-11% of the LAIi.

  • PDF

Effect of NaCl Concentration on Photosynthesis and Mineral Content of Barley Seedlings under Solution Culture

  • Cho, Jin-Woong;Kim, Choong-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.3
    • /
    • pp.152-156
    • /
    • 1998
  • This study was conducted to elucidate the changes of photosynthetic ability and cation content in barley cultivar seedlings cultured for 10 and 30 days with different NaCl concentrations containing 1/4 Hoagland solutions. At the highest NaCl concentration, the weight of dry matter and the shoot/root ratio (S/R ratio) were decreased. Thus, shoots were affected more than roots by NaCl treatment. The S/R ratio decreased more in 'Neulssalbori' than in 'Bunong' by the NaCl treatment. The. internal $Na^+$ concentration increased greatly with the highest NaCl concentration, but $K^+$ concentration in plants decreased with the highest NaCl treatment. The $Ca^{2+}$ concentration had a small change with NaCl concentrations. Thus $Na^+$/$K^+$and $Na^+$/$Ca^{2+}$ratios increased with the highest concentration. The chlorophyll content (%/dry weight) of seedlings decreased at higher NaCl levels except for Bunong in 30 day old seedlings. The photosynthetic ability decreased only for Neulssalbori in the 10 days NaCl treatment. The stomatal conductance, and transpiration had decreased in the 10 day old seedlings, but not with 30 day old seedlings.

  • PDF

Studies of Physiological Response to the Salt Tolerance of Rice Cultivars (염류 스트레스에 대한 수도품종의 생리적 반응에 대한 연구)

  • 조동하
    • Korean Journal of Plant Resources
    • /
    • v.11 no.1
    • /
    • pp.93-100
    • /
    • 1998
  • This study was to investigate the dry weight, the amount of Na+ and K+ water potential and leaf photosynthesis rate in plants for determining the salt tolerance mechanism in rice cultivars on soil and solution culture with NaCl. The results obtained in this study are summarized as follows ; In general, rice cultivars, cv. Tetep and Jinbu, having high salt tolerance in ID(identified on dry matter production level) showed the higher salt tolerance in RGR (relative growth rate), compared with rice cultivars(cv. Nonglim 41ho, Dunraebyeo and Sobackbyeo) having low salt tolerance. The contents of Na in rice differed depending on culivars and plant parts. Tetep contained 2.9times higher amounts of Na+ than leaf blade and root part. High salt tolerance cultivar Obongbyeo showed a larger decrease in osmotic potential than low salt tolerance cultivar Dunraebyeo suggesting that osmotic adjustment was developed under salt stress conditions in a salt tolerant cultivar . In order to know the IY(identified on grain yeild level using rice cultivars having different salt tolerance the capacity of photosyntheiss was investigated. The capapcity of photosynthesis in cv. Tetep and Obongbyeo having high salt tolerance was much higher that in cv.Dunraebyeo and Nonglim 41 having low salt tolerance.

  • PDF

Prediction of Nutrient Composition and In-Vitro Dry Matter Digestibility of Corn Kernel Using Near Infrared Reflectance Spectroscopy

  • Choi, Sung Won;Lee, Chang Sug;Park, Chang Hee;Kim, Dong Hee;Park, Sung Kwon;Kim, Beob Gyun;Moon, Sang Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.277-282
    • /
    • 2014
  • Nutritive value analysis of feed is very important for the growth of livestock, and ensures the efficiency of feeds as well as economic status. However, general laboratory analyses require considerable time and high cost. Near-infrared reflectance spectroscopy (NIRS) is a spectroscopic technique used to analyze the nutritive values of seeds. It is very effective and less costly than the conventional method. The sample used in this study was a corn kernel and the partial least square regression method was used for evaluating nutrient composition, digestibility, and energy value based on the calibration equation. The evaluation methods employed were the coefficient of determination ($R^2$) and the root mean squared error of prediction (RMSEP). The results showed the moisture content ($R^2_{val}=0.97$, RMSEP=0.109), crude protein content ($R^2_{val}=0.94$, RMSEP=0.212), neutral detergent fiber content ($R^2_{val}=0.96$, RMSEP=0.763), acid detergent fiber content ($R^2_{val}=0.96$, RMSEP=0.142), gross energy ($R^2_{val}=0.82$, RMSEP=23.249), in vitro dry matter digestibility ($R^2_{val}=0.68$, RMSEP=1.69), and metabolizable energy (approximately $R^2_{val}$ >0.80). This study confirmed that the nutritive components of corn kernels can be predicted using near-infrared reflectance spectroscopy.

Nitrogen Uptake and Growth of Soybean Seedlings under Flooding Stress

  • Won Jun-Yeon;Ji Hee-Chung;Cho Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.2
    • /
    • pp.118-122
    • /
    • 2006
  • This experiment was carried out on plastic pots ($40cm{\times}25cm{\times}30cm$) filled with sand soil at greenhouse using two soybean cultivars with small seed; one was Pungsannamulkong (PSNK) recognized as a tolerant cultivar against excessive water stress and the other one was Sobaeknamulkong (SBNK) recognized as a susceptible cultivar. Seed was sown with 30 plants of 2 hills, and the amount of applied fertilizer was N; 3.0 g, P; 3.0 g, and K; 3.4 g per $m^2$ with all basal fertilizations. Plants were grown under photoperiod of natural light with day temperature of $31{\pm}5^{\circ}C$ and night temperature of $22{\pm}1^{\circ}C$. The flooding treatment was done for 3, 5, 7 and 10 days by filling pots with tap water up to 1 cm above the level of the soil surface when plants were 2 days after emerging. Nitrogen uptake by leaves of soybeans decreased significantly by the flooding after 6 days. This significant reduction of N uptake by flooding was evidently recognized from the chlorosis of leaves. The dry matter of flooded soybean seedlings significantly decreased compared to non-flooded soybean seedlings at 10 days. The dry matter of roots also showed similar result of the shoot. Shoots had more N reduction than roots under the flooding. This N reduction was more pronounce in SBNK than in PSNK. Chlorophyll content of flooded soybeans showed decreasing or non-increasing tendency, and the reduction of chlorophyll content was more in SBNK than in PSNK from the flooding stress. Nitrate content of soybean seedlings with flooding stress showed decreasing tendency in shoot and root parts. Ammonium content, however, was higher in flooding stress compared to the non-flooding. Flooding caused a remarkable change in the AA (amino acid) composition and TAA (total amino acid) concentration in the leaves of soybean seedlings.

The Foliage of Flemingia (Flemingia macrophylla) or Jackfruit (Artocarpus heterophyllus) as a Substitute for a Rice Bran - Soya Bean Concentrate in the Diet of Lactating Goats

  • Mui, Nguyen Thi;Ledin, Inger;Uden, Peter;Binh, Dinh Van
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.1
    • /
    • pp.45-54
    • /
    • 2002
  • Ninety lactating goats (Bachthao, Barbary, Beetal and Jamnapary breeds) were used in an experiment to investigate the replacement value of the tree fodders Flemingia (Flemingia macrophylla) and Jackfruit (Artocarpus heterophyllus). The foliages were used to replace the concentrate in diets based on chopped whole sugar cane (Sacharatum sp.), Para grass (Brachiaria mutica) and dried cassava root (Manihot esculanta). The concentrate was replaced by foliage of Jackfruit or Flemingia at 0%, 20%, 40%, 60% and 80% based on the crude protein (CP) content in the concentrate and foliages, respectively. Average milk yield was 1,617 g/day for goats fed Jackfruit compared to 1,532 g/day for those fed Flemingia. Increasing amounts of Flemingia foliage resulted in reduced dry matter intake and decreased milk yield but milk composition (CP, casein and fat content) was similar up to 60% replacement. Flemingia showed a poor potential as a supplement for lactating goats and replacement levels should not exceed 20% of the protein in the concentrate or 7.5% of the dry matter in the diet. With respect to the combination of milk production and net return over the control a CP replacement rate of 20% was the most promising. For Jackfruit there was similar feed intake and milk yield at a replacement level of 20% of CP in the concentrate (9.2% of DM intake) compared to the control diet. Milk yield at the level of 40% replacement (15% of the DM) in the diet was slightly reduced. Up to a level of CP replacement rate of 60% (21% DM in the diet) can be suggested for on-farm testing as a higher net return over the control was obtained on station.