• Title/Summary/Keyword: root dry matter

Search Result 227, Processing Time 0.028 seconds

An enhanced root system developmental responses under drought by inoculation of rhizobacteria (Streptomyces mutabilis) contributed to the improvement of dry matter production in rice

  • Suralta, Roel R.;Cruz, Jayvee A.;Cabral, Maria Corazon J.;Niones, Jonathan M.;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.231-231
    • /
    • 2017
  • Drought limits rice production under upland condition. This study quantified the effect of rhizobacteria inoculation on rice root system developmental response to drought and its role in maintaining high soil water use, and dry matter production under drought using NSIC Rc192 (rainfed lowland rice variety). The source of inoculant was Streptomyces mutabilis, a recently isolated rhizobacteria containing plant growth promoting compounds such as ACC deaminase, indole-3-acetic acid and phosphatase (Cruz et al., 2014, 2015). In the first experiment, pre-germination inoculation of seeds with S. mutabilis significantly increased the shoot and root (radicle) length as well as root hair lengths, relative to the non-inoculated control. In the second experiment, rice plants inoculated with S. mutabilis and grown in rootbox with soil generally had greater total root length under drought regardless of the timing of inoculations, relative to the non-inoculated control. Consequently, improved root system development contributed to the increase in soil water uptake under drought and thus, dry matter production. Among inoculation treatments, one-time inoculation of S. mutabilis either at pre-germination or pre-drought stress at 14 days after sowing (DAS), had significantly greater shoot dry matter production than three-time inoculation at pre-germination, at thinning (3 DAS) and at pre-drought (14 DAS). This study demonstrated the effectiveness of rhizobacteria (S. mutabilis) containing growth promoting compounds for enhancing drought dehydration avoidance root traits and improving the growth of rice plants under drought condition.

  • PDF

Responses of Mungbean Varieties to Rhizobium Inoculation in respect of Nodulation, Nitrogenase Activity, Dry Matter Yield, and Nitrogen Uptake

  • A.R.M. Solaiman;M.M. Haque
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.5
    • /
    • pp.355-360
    • /
    • 2003
  • The responses of six mungbean [Vigna radiata (L.) Wilczek] varieties to Rhizobium inoculation on number and dry weight of nodules, nitrogenase activity of root nodule bacteria, dry weight of shoot and root, nitrogen content, and uptake by shoot were investigated. The mungbean varieties were BARI Mung-2, BARI Mung-3, BARI Mung-4, BARI Mung-5, BINA Moog-2, and BU Mung-1. Two-third seeds of each variety were inoculated with Rhizobium inoculant and the remaining one-third seeds were kept uninoculated. Rhizobium strains TAL 169 and TAL 441 were used for inoculation of seeds. Inoculation of seeds with Rhizobium strains significantly increased nodulation, nitrogenases activity, dry matter production, nitrogen content, and uptake by shoot of the crop compared to uninoculated control. There was positive correlation among the number and dry weight of nodules, nitrogenase activity, dry weight of shoot and root, nitrogen content, and uptake by shoot of the crop. It was concluded that BARI Mung-4 in association with Rhizobium strain TAL 169 performed best in recording nodulation, nitrogenase activity, dry matter production, and nitrogen uptake by shoot of mungbean.

Effect of seeding depth on seedling growth and dry matter partitioning in American ginseng

  • Proctor, John T.A.;Sullivan, J. Alan
    • Journal of Ginseng Research
    • /
    • v.37 no.2
    • /
    • pp.254-260
    • /
    • 2013
  • Greenhouse and field experiments with American ginseng (Panax quinquefolius L.) stratified seed sown at depths of 10 to 100 mm were carried out to determine effects of seeding depth on seedling emergence, growth and development and to calculate optimum seeding depth. The time to 50% seedling emergence ($E_{50}$) in the field increased linearly from 17 d at 20 mm seeding depth to 42.5 d at 80 mm. Seedling emergence and root weight (economic yield) at the end of the first year each increased quadratically with the increase of seeding depth. Maximum emergence and root yields were produced at sowing depths of 26.9 and 30.6 mm respectively. In a greenhouse pot experiment, increasing seeding depth from 10 to 100 mm increased partitioning of dry matter to leaves from 23.6% to 26.1%, to stems from 6.9% to 14.2%, and decreased dry matter to roots from 69.5% to 59.7%. Optimum seeding depth was 31.1 mm for a corresponding maximum root weight of 119.9 mg. A predictor equation [X (seeding depth, mm)=Y (seed weight, mg)/9.1+20.96] for seeding depth for ginseng, based on data for ten vegetable crops, their seed weights and suggested seeding depths, predicted a seeding depth of 28.3 mm for ginseng similar to that reported above for most pot and field experiments.

Effect of Fruits Removal on the Photosynthesis and the Growth of Ginseng Plant (Punax ginseng C. A. MEYER) (적예가 인삼의 광합성 및 생육에 미치는 영향)

  • Yang, Deok-Jo;Lee, Seong-Sik;Kim, Yo-Tae
    • Journal of Ginseng Research
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 1982
  • This study was conducted to determine effect of fruits removal on the CO2 exchange rates (CER) and growth of ginseng plant. Fruit of 2, 4 age plant removed at 7, May. The results of these investigations are as follows. 1. The net photosynthetic rates of the ginseng bearing fruits increased to a considerably greater degree than that of the ginseng without fruit in each ages. 2. The total dry matter per plant in bearing fruit (40.24g) had produced more dry matter than that of non-fruiting plant (38.13g) , but the root 4.y matter in fruiting plant (26.2g) had produced less dry matter than that of non-fruiting plant (27.1g) in 4 age. 3. The ginseng plant in bearing fruit did not influence the dry matter of stem and leaf. 4. The maximum RGR of root (17, June) was slower than that of fruit (4, June) .

  • PDF

Studies on the Grassland Development in the Forest VI. Effect of shading degrees on the correlations and the variations of agronomic characteristics in the shoot and root part of some grases (임간 초지 개발에 관한 연구 VI. 차광정도에 따른 주요목초의 지상부 및 지하부의 생육형질 변이와 그 상관관계)

  • Park, M.S.;Seo, S.;Han, Y.C.;Ryoo, J.W.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.2
    • /
    • pp.79-86
    • /
    • 1987
  • This study was carried out to investigate the relationships and the variations of agronomic characteristics in the shoot and root part of grasses for the basic data of the development, the management and the utilization of pasture in the forest. This study was conducted with 0% (full sunlight), 25%, 50% and 75% of shading degrees after orchardgrass, timothy, perennial ryegrass, ladino clover and orchardgrass dominated mixture were planted on Aug. 25 in 1984. The results are summarized as follows: 1. Dry matter yield in 25% of shading was increased 3-1 7% compared with 0% (full sunlight), while 50 and 75% of shading were decreased 28-35% and 44-60%, respectively. Dry matter yield of timothy, perennial ryegrass and ladino clover were decreased 10, 8 and 33%, respectively, compared with orchardgrass, but there was little difference between orchard grass and mixture. 2. Root distribution by different shading degrees was the maximum at 25%, followed by 0, 50 and 75% of shading degrees. Root distribution among different species was the maximum at orchardgrass, followed by perennial ryegrass and timothy. Especially, root distribution of timothy was very little compared with different species. And significantly positive correlation was observed in the relationship between root weight and dry matter yield (r=0.8 102**). 3. The physiological activity of root by different shading degrees was declined by more shading. 4. The length and the percentage of blade by different shading degrees was an increase tendency by more shading. The length and the percentage of blade among different species was followed by timothy, perennial ryegrass and orchardgrass, in that order. And the correlation between the percentage of blade and dry matter yield was significantly negative.

  • PDF

Root vs. Shoot Genotype Effects on Growth Characters and Seed to Pod-Shell Ratio in Grafted Soybean Plants (콩 유전자형간 상호접목이 지상부 생육과 협실비율에 미치는 영향)

  • Lee, Suk-Ha;Seung, Yeul-Gue;Kim, Yong-Ho;Hong, Eun-Hi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.5
    • /
    • pp.458-464
    • /
    • 1994
  • The partitioning of dry matter into seed and pod-shell is important because yield increase can be achieved by improving the distribution rate of assimilation products to seeds. The present study was undertaken to characterize whether the partitioning of dry matter into seed was shoot- or root-controlled through graftiong techniques. Self- and reciprocal-grafts were made among four soybean genotypes, which were 'Baekunkong', 'Suwon 168', and two local soybeans with black seed coat (hereafter referred to as the 'black soybean'), 'Kangleungjarae' and 'Keumleungjarae'. Self-grafted black soybeans showed lower ratio of seed to pod-shell dry wight than self-grafted Baekunkong and Suwon 168. Varying the shoot genotypes in grafts resulted in significant differences in growth characters as well as pod and seed dry weight per plant at physiological maturity. There were significant effects of shoot genotypes on the ratio of seed to pod-shell dry weight, indication that the partitioning of dry matter into seed and pod-shell should be shoot- rather than root-controlled. The grafts with large pod-shell dry weight tended to partition relatively smaller dry matter into seed than pod-shell.

  • PDF

On the Growth and Total Nitrogen Changes of Glycine max. Artificial Plant Communities, Grown in Sandy Loam Soil withe a Controlled Moisture Content (토양함수량의 조절에 의한 Glycine max. 인공군업의 성장과 총질소량의 변동에 관하여)

  • 임양재
    • Journal of Plant Biology
    • /
    • v.14 no.3
    • /
    • pp.21-28
    • /
    • 1971
  • Dry matter production, leaf area growth and total nitrogen changes were studied in Glycine max. soybean communities, which were grown in sandy loam soils controlled to provide various moisture levels, i.e., 5-7%(level 1), 8-10%(level 2), 11-13%(level 3), 14-15%(lev디 4), 17-20%(level 5) and 22-24%(level 6). A summary of the results is shown. The maximum dry matter production of leaves, stems and nodules and the maximum leaf area per unit area were at level 5, but the maximum of root dry matter production was at level 4. Total nitrogen content of the soybean plant decreased with growth, but each level of soil moisture content also showed a little difference. Water content of the plant decreased with plant age and soil water deficiency, especially in roots and nodules. Nodule formation increased in proportion to soil moisture content. total nitrogen content of the soil on which the soybeans grew, increased from 0.23% before sowing to 0.30% at 100 days after sowing. It seems that soil water content acts as a linear factor in the elongation or dry weight increase of shoots and roots until increasing to level 5. Considering the pattern of plant growth through analysis of the shoot and root dry weight ratio, or the photosynthetic organ and non-photosynthetic organ dry weight ratio, the asymptote of plant growth at a high soil water content exceeded that at a low soil water content.

  • PDF

Growth, Dry Matter Partitioning and Photosynthesis in North American Ginseng Seedlings

  • Proctor, John T.A.;Palmer, John W.;Follett, John M.
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.175-182
    • /
    • 2010
  • North American ginseng seedlings (Panax quinquefolius L.) were grown in pots in heated greenhouses, in a cool greenhouse, or in the field, in 11 experiments at various times over 16 years. Crop establishment, dry matter partitioning, photosynthesis, radiation use efficiency and carbon budget were measured and/or calculated in some years. Once the seedling canopy, of about $20\;cm^2$ per seedling, and a leaf area index of 0.37, was established, about 40 days after germination, full canopy display lasted about 87 days. Only 16.6% of the incoming solar radiation was intercepted by the crop, the remainder falling on the mulched soil surface. Total and root dry matter accumulations in the cool greenhouse and in the field were about double that in the heated greenhouses. Partitioning of dry matter to roots (economic yield or harvest index) in the cool greenhouse and in the field was 73% whereas it was 62.5% in the heated greenhouses. The relationship between root dry matter and radiation interception during the full canopy period was linear with growth efficiencies of $2.92\;mg\;MJ^{-1}$ at 4.8% of incoming radiation and $0.30\;mg\;MJ^{-1}$ at 68% of incoming radiation. A photosynthetic rate of $0.39\;g\;m^{-2}\;h^{-1}$ was attained at light saturation of about $150\;{\mu}mol\;m^{-2}\;s^{-1}$ (7.5% of full sunlight); dark respiration was $0.03\;g\;m^{-2}\;h^{-1}$, about 8.5% of maximum assimilation rate. Estimates of dry matter accumulation by growth analysis and by $CO_2$ uptake were similar, 6.21 vs. 7.62 mg $CO_2$, despite several assumptions in $CO_2$ uptake calculations.

Responses of Pea Varieties to Rhizobium Inoculation: Nitrogenase Activity, Dry Matter Production and Nitrogen Uptake

  • Solaiman, A.R.M.;Khondaker, M.;Karim, A.J.M.S.;Hossain, M.M.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.5
    • /
    • pp.361-368
    • /
    • 2003
  • The responses of five varieties and three cultivars of pea (Pisum sativum) to Rhizobium inoculation on nodulation, growth, nitrogenase activity, dry matter production and N uptake were investigated. The pea varieties were IPSA Motorshuti-l, IPSA Motorshuti-2, IPSA Motorshuti-3, BARI Motorshuti-l, BARI Motorshuti-2 and the cultivars were 063, Local small and Local white. Fifty percent seeds of each pea variety/cultivar were inoculated with a mixture of Rhizobium inoculants at rate of 15g/kg seed and the remaining fifty percent seeds were kept uninoculated. The plants inoculated with Rhizobium inoculant significantly increased nodulation, growth, nitrogenase activity, dry matter production and N uptake. Among the varieties/cultivars, BARI Motorshuti-l performed best in almost all parameters including nitrogenase activity of root nodule bacteria of the crop. There were positive correlations among the number and dry weight of nodules (r=$0.987^{**}$, $0.909^{**}$), nitrogenase activity of root nodule bacteria (r=$0.944^{**}$, $0.882^{**}$), dry weight of shoot (r=$0.787^{**}$, $0.952^{**}$), N content (r=$0.594^{**}$, $0.605^{**}$) and N uptake (r=$0.784^{**}$, $0.922^{**}$) by shoot both at flowering and pod filling stages of the crop, respectively. It was concluded that BARI Motorshuti-l in symbiotic association with Rhizobium inoculant performed best in recording nitrogenase activity, dry matter production and N uptake by pea.

Seasonal Growth and Root Respiration of North American Ginseng

  • John, T.A. Proctor;Dean, Louttit;Jirong, Jiao
    • Journal of Ginseng Research
    • /
    • v.22 no.3
    • /
    • pp.161-167
    • /
    • 1998
  • American ginseng plants (Panax quinquefolium L.) of various ages were harvested every two weeks during each of three growing seasons and dry matter yield of components and root respiration determined. Shoot dry weight was about 0.5 g, 2.5 g and 4 g for 2, 3 and 4-year-old plants, respectively and fruit dry weight was as much as 50% of this in 3- and 4-year-.old plants. Root dry weight decrease by 30~50% as shoots emerged and at the end of the season was about 2 g, 3.5 g and 5 g in 2, 3, 4 and 5-year-old plants, respectively. Shoot and root dry weight were linearly related with an approximate 1:2 ratio. Root respiration rate at 2$0^{\circ}C$ in the dark was about 5 $\mu\textrm{g}$ CO2 g-1 DW(dry weight) min-1 in the early season, then doubled within 50 days as shoots emerged, and thereafter declined over the season to 2~5 $\mu\textrm{g}$ CO2 g-1 DW min-1. The Q10 for dark respiration over the interval from 10 to 2$0^{\circ}C$ was 1.58. Root respiration rate and shoot growth rate was positively linearly related in all ages of plants. Key words: Dry weight, partitioning.

  • PDF