• Title/Summary/Keyword: root crack

Search Result 154, Processing Time 0.024 seconds

Integrity Evaluation and Root Cause Analysis of Cracks at the Volute Tongue of Centrifugal Pump (원심펌프 벌류트 혀의 균열 원인분석 및 건전성 평가)

  • Park, Chi-Yong;Kim, Jin-Weon;Kim, Yang-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.7-14
    • /
    • 2000
  • This paper provides integrity evaluation and root cause analysis for defects observed at volute tongue, or cutwater, of the operating centrifugal pump in power plant. The cause of the cracks are analyzed and reviewed from the viewpoint of the operation and maintenance of the pumps, and the sample obtained from the cracked volute tongue of the pump are examined. At first, in-situ hardness test and microstructure examination were performed to understand the cause of cracking at volute tongue. The evaluation of structural integrity and the possibility of the crack propagation is also evaluated. Cracks were typical intergranular cracking and propagated along with prior austenite grain boundary. At easing volute tongue, the hardness was higher than ASTM requirement and a large amount of intergranular Cr carbide was precipitated. These were due to high C content in material. P content was also higher than ASTM requirement. Therefore, Cr carbide precipitation and P segregation at grain boundary, caused by higher C and P content in material, resulted in intergranular cracking of casing volute tongue. This procedure for integrity evaluation and root cause analysis is used to guide, and support the pump designer and manufacturer's material selection and process design to avoid a costly, unplanned outage of plant.

  • PDF

Mixed-mode fatigue crack growth behaviors in 5083-H115 aluminum alloy (5083-H115 알루미늄 합금의 혼합 모우드 피로 균열성장 특성)

  • 옹장우;진근찬;이성근;김종배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.461-471
    • /
    • 1989
  • For the mixed-mode crack problems the direction of crack growth, the crack path and the rational representation of fatigue crack growth rates should be studied to predict fatigue life and safety of structures. In this study, a round specimen which produce nearly identical effects in all loading directions is proposed to make an easy measurement of initial direction of crack growth. The mode I and mode II stress intensity factors of the specimen were calculated using finite element method, in which the square root singular stresses at the crack tip are modeled by means of four rectangular quarter-point eight-noded elements surrounding the crack tip. Experimental results for high strength aluminum alloy showed that the direction of mixed-mode crack growth agree well with maximum principal stress criterion as well as minimum strain energy density criterion, but not with maximum shear stress criterion. From data of fatigue crack growth rates using crack geometry projected on the line perpendicular to the loading direction it is easily established that mixed-mode fatigue crack growth in 5083-H115 aluminum alloy goes predominantly with mode I crack growth behaviors.

Analysis of Field Condition for Proper Waterproofing Materials applied to Green Roof System for Depot (도시철도 차량기지의 기반녹화에 적합한 방수시스템 선정을 위한 환경 조건 분석)

  • Min, Kwang-Man;Kwon, Shi-Won;Choi, Sung-Min;Kwak, Kyu-Sung;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.127-131
    • /
    • 2006
  • Depot have a lagged behind structure in the side of building up the view. With this reason, people have been recognized depot as hatred facility causes to have car noise, air pollution. In the other hand, depot become a underground and complex facility as a higher-value added building, and moreover, it need to understand the environment that depot structure have a specific field condition to apply green roof system. 1) Analysis proper waterproofing material and root barrier apply to depot need root penetrating test method 2) Suggest root barrier and waterproofing material relate to maintain and construction for green roof system 3) Construction condition for depot have crack movement of structure by vehicle vibration and root penetrating force by plant growth

  • PDF

Test for Root Penetration Resistance for Waterproofing Layer proper to assure Structural Safety on the Concrete (인공녹화 기반 콘크리트 구조체의 안전성 확보를 위한 옥상녹화 방수층의 내근성 평가)

  • Kwon, Shi-Won;Sun, Yun-Suk;Kwak, Kyu-Sung;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.873-876
    • /
    • 2006
  • At the green roof on the concrete structure, root penetration can be the most problem to water leakage. Root occur cracks due to penetrate to concrete which have porous organization by itself. Crack on the concrete structure would be constantly shrinks and expands, it occur to water leakage and decrease durability of concrete structure. Therefore, in this paper, the result of the root penetration test for waterproofing which protect concrete structure from the water leakage or other environment conditions would be apply to understand the reason of root penetration.

  • PDF

CRACK INITIATION AND PROPAGATION OF BLADES FRACTURE MECHANICS APPROACH

  • Rao, J. S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.02a
    • /
    • pp.11-28
    • /
    • 1998
  • Crack initiation and propagation of blades is a serious matter in turbomachinery. Outages are common due to these problems that occur during the service of the machine resulting in a huge loss of revenue. Once in a while, the problems become serious and cause major shutdowns which can in some cases result in the loss of the whole machine in a catastrophic manner. In this presentation, we will discuss the crack initiation studies of a hydraulic machine runner blade by local stress strain approach and crack propagation at the root of a low pressure stage steam turbine blade by means of stress intensity factor approach. In both the cases, we will show how the present day technologies can predict actual field observations.

  • PDF

Variation of Dynamic Characteristics of a Low Pressure Turbine Blade with Crack Length (저압터빈 블레이드의 균열 길이에 따른 동특성 변화)

  • Yang, Kyeong-Hyeon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1281-1288
    • /
    • 2009
  • Variation of dynamic characteristics of a low pressure turbine blade with crack length is studied in this paper via both experiments and finite element model. Since most of the turbine blades used in domestic power plants are imported from abroad, it is necessary to understand their dynamic behavior in advance. When experimentally obtained natural frequencies and mode shapes are compared with those from FEM results, they are close to each other in their magnitude. Then, it is more feasible to use finite element model for analyzing the dynamic characteristics of a blade under various operation conditions (rotation speed, temperature, etc) as well as with a crack in the blade.

A developed hybrid method for crack identification of beams

  • Vosoughi, Ali.R.
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.401-414
    • /
    • 2015
  • A developed hybrid method for crack identification of beams is presented. Based on the Euler-Bernouli beam theory and concepts of fracture mechanics, governing equation of the cracked beams is reformulated. Finite element (FE) method as a powerful numerical tool is used to discritize the equation in space domain. After transferring the equations from time domain to frequency domain, frequencies and mode shapes of the beam are obtained. Efficiency of the governed equation for free vibration analysis of the beams is shown by comparing the results with those available in literature and via ANSYS software. The used equation yields to move the influence of cracks from the stiffness matrix to the mass matrix. For crack identification measured data are produced by applying random error to the calculated frequencies and mode shapes. An objective function is prepared as root mean square error between measured and calculated data. To minimize the function, hybrid genetic algorithms (GAs) and particle swarm optimization (PSO) technique is introduced. Efficiency, Robustness, applicability and usefulness of the mixed optimization numerical tool in conjunction with the finite element method for identification of cracks locations and depths are shown via solving different examples.

Effect of post treatment on the fatigue strength of welded joint (용접부 피로강도에 미치는 후처리의 영향)

  • 윤중근;김현수;황주환;박동환
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.240-242
    • /
    • 2004
  • Effect of post treatment on the fatigue strength of a box weldment was investigated in order to improve fatigue life of the weldment. The post treatment applied were the smooth grinding of weld bead, weld toe grinding and hammer peening at the weld toe. The fatigue strength of the weldment after post treatment clearly increased, compared with that of the weldment in as-welded condition. After smooth grinding of weld bead, fatigue crack initiated at the root of the weldment, while fatigue crack initiated at the weld toe for the other methods.

  • PDF

Dental microscope in Nonsurgical Endodontics (임상가를 위한 특집 3 - 현미경을 이용한 비외과적 근관치료)

  • Kim, Jin-Woo
    • The Journal of the Korean dental association
    • /
    • v.51 no.10
    • /
    • pp.556-564
    • /
    • 2013
  • Modern endodontics has essentially changed following the introduction of the dental microscope since 1990's. One of main advantage of using dental microscope in nonsurgical endodontic treatment is enhancing clinician's ability and quality of treatment through illumination and magnification. Scopes of dental microscope in nonsurgical endodontics are finding a missed or additional root canal and a tooth crack, management of procedural errors, and others. These improvements in technology will result in greater confidence in treatment and better success in clinical practice.

Variability of Fatigue Crack Initiation Life in Flux Cored Arc Welded API 2W Gr.50 Steel Joints

  • Sohn, Hye-Jeong;Kim, Seon-Jin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.160-169
    • /
    • 2012
  • Flux Cored Arc Welding (FCAW) is a common practice to join thick plates such as the structural members of large scale offshore structures and very large container ships. The objective of this study was to investigate the mechanical properties and variability of the fatigue crack initiation life in the flux cored arc welded API 2W Gr.50 steel joints typically applied to offshore structures with a focus on the effect of the materials in fatigue crack growth life from the notch root of a compact tension specimen. Offshore structural steel (API 2W Gr.50) plates (60-mm thick) were used to fabricate multi-path flux core arc welded butt welded joints to clearly consider fatigue fractures at the weld zone from the notch. Fatigue tests were performed under a constant amplitude cyclic loading of R = 0.4. The mean fatigue crack initiation life of the HAZ specimen was the highest among the base metal (BM), weld metal (WM), and heat affected zone (HAZ). In addition, the coefficient of variation was the highest in the WMl specimen. The variability of the short fatigue crack growth rates from the notch tips in the WM and HAZ specimens was higher than in BM.