• Title/Summary/Keyword: root characteristics

Search Result 2,057, Processing Time 0.03 seconds

Effect of Chicory (Chicorium intybus L.) Root Diameter on Chicon Growth Characteristics (치커리 근경이 치콘 생육에 미치는 영향)

  • Seo, Hyun-Taek;Won, Jae-Hee;Jeon, Shin-Jae;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.139-143
    • /
    • 2011
  • This study was conducted to investigate correlation between external factors of chicory root and chicon fresh weight, whereby, to provide basic information of external yardstick of producing standardized chicon. For correlation between external factors (root diameter, root weight) of chicory root and chicon fresh weight were highly correlated. The relationship between external factors (root diameter, root weight) of chicory root and chicon fresh weight, root diameter was strongly affecting chicon fresh weight due to significant at its regression coefficient ($6.06^{***}$). In order to verity this correlation, the root diameter (x) of chicory that were 3 different varieties were based on the 4 different root diameter treatments, such as x ${\leq}$ 30 mm, 30 < x ${\leq}$ 40 mm, 40 < x ${\leq}$ 50 mm and x > 50 mm. The chicon production increased as root diameter increased and the chicon fresh weight, chicon width, and the number of leaves increased as well. Therefore, the measure of root diameter of chicory instead of the internal factors (carbohydrate, and so on.) can be used to predict the chicon fresh weight.

Difference of Growth and Root Characteristics of Sweetpotato by Cultivated Region (재배지역에 따른 고구마의 생육 및 괴근 특성 차이)

  • Han, Seon-Kyeong;Song, Yeon-Sang;Ahn, Seung-Hyun;Lee, Hyeong-Un;Lee, Joon-Seol;Chung, Mi-Nam;Park, Kwang-Geun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.3
    • /
    • pp.262-270
    • /
    • 2012
  • This research was performed to find out the root characteristics of sweetpotato (Ipomoea batatas LAM.) cultivars according to the cultivation regions. Total 10 sweetpotato culivars, 6 yellow, 2 purple and 2 orange, were used for experiment. Samples were cultivated in Muan, Iksan, Nonsan, Boryeong and Hamyang. Precipitation and average temperature during the growth period of sweetpotato cultivation were 882~1,682 mm and 16.7~$28.2^{\circ}C$, respectively. Accumulated temperature was 3,122~$3,282^{\circ}C$. Soil texture was found of sandy loam in Muan, Iksan and Boryeong, sandy clay loam in Nonsan, and loam in Hamyang. The yield of root, dry matter content, starch value and soluble solids contents were high in Muan. The length/width ratio was high in Hamyang. The color values of sweetpotatoes were high in Nonsan. The protein content of sweetpotato powder was high in the Iksan, crude fat content and ash content were high in the Hamyang. The results of this study, we could see that root characteristics of sweetpotato in the same cultivars appeared differently depending on the cultivated regions.

Properties of Suppressive and Conducive Soils to Ginseng Root Rot (인삼 근부병 억제토양 및 유발토양의 특성)

  • Chung Young Ryun;Kim Hong Jin;Ohh Seung Hwan;Lee Il Ho
    • Korean journal of applied entomology
    • /
    • v.22 no.3 s.56
    • /
    • pp.203-207
    • /
    • 1983
  • Biological, physical and chemical characteristics of suppressive and conducive soils to ginseng root rot were investigated. Population of antagonistic microorganisms to Fusarium solani was much higher in suppressive soils than in conducive soils, whereas the numbers of Fusarium species were smaller in suppressive soils. Mycelial growth and chlamydospore formation of Fusarium solani were inhibited in suppressive soils. In the water extract of suppressive soils, lysis of germination tube and macroconidia of F. solani was occurred by antagonistic microorganisms at 4 hours after treatment. There were no significant differences in physical and chemical characteristics between supressive soils and conducive soils to ginseng root rot, however, clay content of suppressive soils was a little higher than that of conductive soils.

  • PDF

Characteristics of soil respiration temperature sensitivity in a Pinus/Betula mixed forest during periods of rising and falling temperatures under the Japanese monsoon climate

  • Oe, Yusuke;Yamamoto, Akinori;Mariko, Shigeru
    • Journal of Ecology and Environment
    • /
    • v.34 no.2
    • /
    • pp.193-202
    • /
    • 2011
  • We studied temperature sensitivity characteristics of soil respiration during periods of rising and falling temperatures within a common temperature range. We measured soil respiration continuously through two periods (a period of falling temperature, from August 7, 2003 to October 13, 2003; and a period of rising temperature from May 2, 2004 to July 2, 2004) using an open-top chamber technique. A clear exponential relationship was observed between soil temperature and soil respiration rate during both periods. However, the effects of soil water content were not significant, because the humid monsoon climate prevented soil drought, which would otherwise have limited soil respiration. We analyzed temperature sensitivity using the $Q_{10}$ value and $R_{ref}$ (reference respiration at the average temperature for the observation period) and found that these values tended to be higher during the period of rising temperature than during the period of falling temperature. In the absence of an effect on soil water content, several other factors could explain this phenomenon. Here, we discuss the factors that control temperature sensitivity of soil respiration during periods of rising and falling temperature, such as root respiration, root growth, root exudates, and litter supply. We also discuss how the contribution of these factors may vary due to different growth states or due to the effects of the previous season, despite a similar temperature range.

Effects of Pinus densiflora on soil chemical and microbial properties in Pb-contaminated forest soil

  • Kim, Sung-Hyun;Lee, In-Sook;Kang, Ho-Jeong
    • Journal of Ecology and Environment
    • /
    • v.34 no.3
    • /
    • pp.315-322
    • /
    • 2011
  • We investigated the effect of Pb uptake by Pinus densiflora and the Pb fraction in forest soil. We also investigated the change in soil physicochemical characteristics, microbial activity, and root exudates of Pinus densiflora in Pb-contaminated soils. Three-year-old pine seedlings were exposed to 500 mg/kg Pb for 12 months. The metal fractions were measured using sequential extraction procedures. Additionally, factors that affect solubility (three soil enzyme activities and amino acids of root exudate compounds) were also determined. The results showed that Pb contamination significantly decreased enzyme activities due to soil characteristics. In addition, organic matter, nitrate content, and Pb concentration were time dependent. The results indicate that changes in the Pb fraction affected Pb uptake by pine trees due to an increase in the exchangeable Pb fraction. The concentrations of organic acids were higher in Pb-spiked soil than those in control soil. Higher rhizosphere concentrations of oxalic acid resulted in increased Pb uptake from the soil. These results suggest that pine trees can change soil properties using root exudates due to differences in the metal fraction.

Characteristics of Soil Groups Basd on the Development of Root Rot of Ginseng Seedlings (인삼 유묘 뿌리썩음병 진전에 따른 토양군별 특성)

  • 박규진;정후섭
    • Korean Journal Plant Pathology
    • /
    • v.13 no.1
    • /
    • pp.46-56
    • /
    • 1997
  • Based on the principal component analysis (PCA) of Richards' parameter estimates, ginseng field soils were grouped as the principal component 1 (PC1) and the principal component 2 (PC2). The microflora and physico-chemical characteristics of each soil group were compared to elucidate soil environmental factors affecting the disease development of root rot of ginseng seedling. Among 3 soil groups by PC1, there were differences in the populations of total fungi (TF) and Cylindrocarpon plus Fusarium (C+F), and the population ratio of Cylindrocarpon plus Fusarium to total fungi or total bacteria (C+F/TF, C+F/TB) in rhizoplane of ginseng seedlings, the population of total actinomycetes (TA) and the population ratio of total Fusarium to total actinomycetes (Fus/TA) in soil, and soil chemical properties (EC, NO3-N, K, Mn, ect.). Among 4 soil groups by PC2, there were differences in TF, C+F, TB, C+F/TF and C+F/TB in the rhizoplane, Trichoderma plus Gliocladium (T+G) in soil, and P2O5 content in soil. Especially, EC, NO3-N, K, K/Mg and Mn were positively correlated to PC1, and TA was negatively to PC1; however, TF, C+F, TB, C+F/TF and C+F/TB in the rhizoplane were significantly correlated to PC2 positively. On the other hand, microbes in the rhizoplane were not significantly correlated to the stand-missing rate (SMR), although TA and Fe/Mn were negatively correlated, and pH and Ca were positively correlated to SMR.

  • PDF

Morphological and molecular characterization of root-lesion nematode Pratylenchus hippeastri from Korea

  • Sungchan Huh;Namsook Park;Heonil Kang;Changhwan Bae;Insoo Choi
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.657-665
    • /
    • 2023
  • The root-lesion nematode Pratylenchus spp. is the most important plantparasitic nematode due to its worldwide distribution, wide host ranges, and migratory endoparasitic characteristics. One population of Pratylenchus collected from the giant pussy willow (Salix chaenomeloides Kimura) in the Andong area as part of a nematode survey in Korea was characterized morphologically and by molecular methods. The analysis of morphological measurements and morphometric characteristics, as well as DNA sequencing of the rRNA large subunit (LSU) D2/D3 expansion segments and the internal transcribed spacer (ITS) gene sequence, confirmed the identity of this population as P. hippeastri. This study is the first report of P. hippeastri associated with Salix chaenomeloides in Korea and worldwide. Further studies on distribution and pathogenicity in different P. hippeastri host crops, such as grapevines, strawberries, and apples, are necessary. The taxonomic keys to 16 Pratylenchus species in Korea are provided.

Effects of Ridge Height, Planting Density and Irrigation on Growth and Yield of Licorice

  • Han, Sang-Sun;Kim, Yeon-Bok;Lee, Sang-Yong;Chang, Kwang-Jin;Lee, Han-Bum;Lee, Ki-Cheol;Park, Cheol-Ho
    • Plant Resources
    • /
    • v.4 no.1
    • /
    • pp.6-12
    • /
    • 2001
  • Growth and yield of licorice were investigated under the different conditions of ridge height, planting density, and irrigation in order to establish its cultural practices for the domestic production with the aim to substitute the import. Seedlings were grown under low ridge(20cm) and high ridge(40cm) in low density plot(60$\times$30cm) and high density plot(40$\times$30cm), respectively. The low ridge cultivation of large seedlings increased plant height and root length under low density, and stem and root diameter under high density compared to the high ridge cultivation. In the high ridge cultivation, high density plot was 1.1 to 1.3 times in plant height, root length, stem and root diameter as high as low density one. Fresh and dry weight of plant and root in high ridge were 1.3 to 1.5 times as high as those in low one. The growth of small seedlings(4~10g) were generally poor compared to that of large seedlings. High density plot in low ridge showed the good growth characteristics including plant height, root length, stem and root diameter, and number of branch. High density plot was 1.4 to 1.6 times in fresh and dry weight of plant and root as high as low density plot. In the seasonal changes of growth under various irrigation regimes, the twice irrigation a day produced the more number of leaf than the other regimes since around 46 days after transplanting. The former irrigation resulted in 1.2 to 1.4 times in plant height as long as the other irrigations around 26 days after transplanting and then the difference was increased to 1.6 to 2.0 times around 64 days after transplanting. Under the twice irrigation a day, plant height, root length, stem diameter, root diameter, number of leaf, fresh plant weight, dry plant weight, fresh root weight, dry root weight were 1.6 to 2.0, 1.1, 1.2 to 1.6, 1.3 to 1.8, 1.9 to 2.7, 1.7 to 8.0, 1.6 to 2.8,2.0 to 3.0, 1.6 to 2.7 times as high as those under the other irrigation regimes, respectively.

  • PDF