• Title/Summary/Keyword: root area

Search Result 1,658, Processing Time 0.024 seconds

A STUDY OF THE ROOT SURFACE AREA, ANATOMIC STRUCTURE AND LINEAR VARIATION OF THE ROOT SURFACE AREA OF THE MANDIBULAR SECOND MOLAR (하악 제2대구치 치근의 형태학적 구조 및 표면적에 관한 연구)

  • Chung, Hyung-Geun;Kwon, Young-Hyuk;Lee, Man-Sup
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.159-169
    • /
    • 1993
  • The thirty six mandibular second molars, which were extracted because of hopeless tooth due to advanced periodontal disease, were measured the length of mesial and distal root and the distance from cementoenamel junction to root separation. The molars were cross-sectioned every 1.5 milimeter from cementoenamel junction to root apex perpendicular to long axis and each section was photographed, projected and measured with a calibrated Digital Curvi-Meter(Com Curvi-8. Japan). The root surface area (RSA), percentage of the RSA and the linear variation of the RSA were calibrated for each 1. 5 mm section. The results were as follows. 1. The mean length of the roots was 12. 98mm for mesial root, 11.84 mm for distal root. The mesial root was longer than distal root.(p<0.01) 2. The mean distance from the cementoenamel junction to the point at which the root separate from the root trunk was 3.82mm for the buccal furcation and 4.75mm for lingual furcation. The buccal root separation was coronal than the lingual root separation.(p<0.01) 3. The total root surface area was $317.78mm^2$. 4. The mean surface area of the root trunk was $150.06mm^2$ and averaged 42.54% of the total root surface area. 5. The mean root surface area was $88.79\;mm^2$ for the mesial root, $78.93mm^2$ for distal root, The mesial root surface area was wider than the distal root surface area.(p<0.05) 6. In comparision, the mean root trunk surface area of the mandibular 2nd molar was wider than that of mandibular 1st molar(p<0.01), but each root of 2nd molar was smaller than that of 1st molar(p<0.01).

  • PDF

A STUDY OF THE DEPTH OF THE ROOT CONCAVITY AND ROOT SURFACE AREA MEASUREMENT OF THE MAXILLARY FIRST PREMOLAR (상악 제1 소구치의 치근면 함요도 및 치근표면적에 관한 연구)

  • Lim, Sang-Cheol;Kwon, Young-Hyuk;Lee, Man-Sup
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.1
    • /
    • pp.165-177
    • /
    • 1994
  • To investigate the depth of the root concavity and root surface area of the maxillary first premolar, 40 maxillary first premolars were used. All the teeth which extracted because of advanced periodontal disease and orthodontic treatment procedure, were sectioned every 1.5mm from cementoenameljunction to the apex with hard tissue microtome. Each sectioned root was taken photograph with slide film, and projected for measuring with a calibrated digital Curvi-Meter. The root surface area, percentage of the RSA and the linear variation of the RSA were calibrated for each 1.5mm section. Linear variation of the depth of root concavity was measured on mesial and distal root surface for each section using computer-aided digitizer. The results were as follows. 1. The total mean root length of maxillary first premolar was 13.48mm. Mean buccal root length of 2-rooted tooth was 12.59mm, mean palatal root length was 12.73mm, and mean root length of single rooted tooth was 13.78mm. 2. The total mean root surface area of maxillary first premolar was $194.17mm^2$, mean root surface area for 2-rooted tooth was $205.97mm^2$ and mean root surface area for single rooted tooth was $188.49mm^2$. 3. It was 59.93% of the total root surface area that the area from CEJ to coronal 6mm. And, the coronal half of the root length accounted for approximately 71.76% of the total root surface area. 4. Most deepest concavity of the mesial root surface was 0.65mm at apical 3.0mm, 4.5mm level in maxillary first premolar. And, that of the distal root surface was 0.37mm at apical 4.5mm level. 5. All of the maxillary first premolar had mesial root surface concavity. This mesial root surface concavity appeared to be more pronounced in 2-rooted tooth than single rooted tooth.

  • PDF

A Study on Root Canal Index of the Maxillary Central Incisorsin Korean Female (한국인 여성 상악중절치의 근관면적비에 관한 연구)

  • 김영구
    • Journal of Oral Medicine and Pain
    • /
    • v.6 no.1
    • /
    • pp.15-18
    • /
    • 1981
  • The author had selected the roots and root-canal as measurable parts and sought the area ratio by measuring the respective areas of the root. Further, heplotted out a root caual index and studied the correlation with age. The teeth used as reserch material were permanent maxillary central incisors of Korean female. Some 296 teeth of known age were selected on condition that there is no caries or filling material and that they were not malformed in showing normal signs in roentgenograms. The $3" {\times} 4"$ printing paper so as to measure easily. On the ocassion of measureing the area of measured parts with a planimeter (Koizumi, type kp-27, Japan), the cervical lines were joined up into a straight line on a photograph (Figure 1) Root canal index = Area of the root / Area of the root canal The results of the root canal index in Korean female age groups were as follows : 1. The root canal index of maxilary central incisor in women was 4.74 im 20 years of age, 5.44 in 30, 5.90 in 40, 6.32 in 50, 6.63 in 60 in the order. 2. Root canal index and age were in positive correlation ; there was a tendency that the root canal index increase as age advances. 3. The regression equation was as follows : Y = 5.36x + 7.71 (r = 0.54, n= 296 ) (Y = estimated age, x = root canal index)

  • PDF

The Effect of Reinforcing Soil Shear Strength by a Root System Developed from Direct Sticking of Salix gracilistyla Miq (삽목에 의한 갯버들 근계의 토양전단강도 보강효과)

  • 이춘석;임승빈
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.5
    • /
    • pp.1-10
    • /
    • 2003
  • The purpose of this study was to verify the shore margin protection effect of a root system developed from direct sticking of Salix gracilistyla Miq., focusing on the reinforcement of soil shear strength. The materials were 20cm long sticks whose average diameter and weight were 7.52mm and 14.58g respectively, and sandy loam(Sand 60.36%, Silt 28%, Clay 11.64%), whose maximum dry weight(${\gamma}$$_{dmax}$) was 1.59gf/㎤ at the water ratio( $W_{opt}$) 13.8%. The direct shearing test(KS F 2343) was applied to cylindric columms(diameter 132mm) of pure soil and two years old root reinforced soil. At each condition of vertical stress, 10N/$ extrm{cm}^2$, 14.41N/$\textrm{cm}^2$ and 18.82 N/$\textrm{cm}^2$, five soil+root columns were sheared. After shear tests, the root area ratio and soil moisture on the shear plane were measured. The results of this research were as follows: 1. The average of root area ratio was 1.86% and the soil moisture 14.67%. 2. Two years old root system was found to increase the soil shear strength of pure soil in terms of Cohesion(C) and Inner friction Angle($\phi$) as follows. 3. The relationship between root area ratio and the increased shear strength can be presented with the following equation, $\Delta$S ≒ 0.33ㆍ TrㆍAs/A $\Delta$S : Increased Shear Strength Tr : Average Tension Strength of Root, Ar/A : Root Area Ratioioage Tension Strength of Root, Ar/A : Root Area Ratio

Comparative Analysis of Root and Shoot Growth between Tongil and Japonica Type Rice

  • Kang, Si-Yong;Shigenori Morita
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.3
    • /
    • pp.161-167
    • /
    • 1998
  • Root and shoot development of two rice (Oryza sativa L.) cultivars with different genetic backgrounds was studied with reference to their relative growth. Tongil type (indica-japonica hybrid) cultivar 'Kuemkangbyeo' and japonica cultivar 'Koshihikari' were grown in $5000^{-1}$ a Wagnar pots under flooded condition. Three plants with roots of both cultivars were taken in every phyllochron through the heading stage to record morphological characteristics of shoot and root system. Compared to Koshihikari, Kuemkangbyeo produced more tillers and had greater shoot weight and leaf area per hill. Length and weight of the root system in both cultivars increased exponentially with time. At the same time, root system development was significantly faster in Kuemkangbyeo than in Koshihikari after the panicle initiation stage. As a result, Kuemkangbyeo has a vigorous root system which consists of larger number of nodal roots compared to Koshihikari. Also, the root length and weight per unit leaf area of Kuemkangbyeo were larger than those of Koshihikari in the later half of growing period, which suggests possible higher physiological activity of the root system of Kuemkangbyeo which is known as a high-yielding cultivar. The relationship between root traits (crown root number, total root length, and root dry weight) and shoot traits (leaf area and leaf+culm dry weight) in both cultivars closely showed allometry until the flag leaf stage.

  • PDF

Root Yields and Saikosaponin Contents Depending on Planting Time and Cultivated Regions of Bupleurum falcatum L.

  • Kim, Choon-Shik;Seong, Jae-Duck;Park, Chung-Heon;Park, Chun-Gun;Cho, Yang-Hee;Kwak, Jun-Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.298-302
    • /
    • 2005
  • In order to decide the optimum planting time for Bupleurum falcatum L. which is grown widely in Korea, some experiments were carried out in different regions such as mid-north area (Gangwon-do, Gyeonggi-do and Chungcheongnamdo), mid-south area (Jeollanam-do, Jeollabuk-do, Gyeongsangnam-do and Gyeongsangbuk-do). The mid-south area had the highest total saikosaponin contents of 1.001, which is the medicinal ingredients of Bupleurum falcatum L., in accordance with the different Bupleurum falcatum L. regions. Also this area has the highest extract contents of 24.3%. Average dry root yields in mid-north area (Gangwon-do) were $450{\sim}460$ kg/ha at planting time of March 20th to March 30th, 500 kg/ha at the time of March 30th to April 10th, and $470{\sim}480$ kg/ha at the time of March 10th to March 20th in Chungcheongnam-do. The optimum planting time in the mid-south area (Jeollabuk-do) was March 10th to March 30th with the average dry root yield of $490{\sim}550$ kg/ha. Average dry root yield in Euiseong, Gyeongsangbuk-do area was 470 kg/ha, and the optimum planting time was April 10th, which suggested that the yield increased as the planting time was delayed. At Jeju-do, the volcanic soil of farsouthern area, average dry root yield was 510 kg/ha at the time of March 10th, but the yield from non-volcanic soil was lower than from volcanic soil, which had a dry root yield of 470 kg/ha.

Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

  • Tasanapanont, Jintana;Apisariyakul, Janya;Wattanachai, Tanapan;Sriwilas, Patiyut;Midtbo, Marit;Jotikasthira, Dhirawat
    • Imaging Science in Dentistry
    • /
    • v.47 no.2
    • /
    • pp.117-122
    • /
    • 2017
  • Purpose: The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Materials and Methods: Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient(ICC) was used to assess intraobserver reliability. Results: The root surface area measurements ($230.11{\pm}41.97mm^2$) obtained using CBCT were slightly greater than those ($229.31{\pm}42.46mm^2$) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. Conclusion: This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth.

Does apical root resection in endodontic microsurgery jeopardize the prosthodontic prognosis?

  • Cho, Sin-Yeon;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.2
    • /
    • pp.59-64
    • /
    • 2013
  • Apical surgery cuts off the apical root and the crown-to-root ratio becomes unfavorable. Crown-to-root ratio has been applied to periodontally compromised teeth. Apical root resection is a different matter from periodontal bone loss. The purpose of this paper is to review the validity of crown-to-root ratio in the apically resected teeth. Most roots have conical shape and the root surface area of coronal part is wider than apical part of the same length. Therefore loss of alveolar bone support from apical resection is much less than its linear length.The maximum stress from mastication concentrates on the cervical area and the minimum stress was found on the apical 1/3 area. Therefore apical root resection is not so harmful as periodontal bone loss. Osteotomy for apical resection reduces longitudinal width of the buccal bone and increases the risk of endo-perio communication which leads to failure. Endodontic microsurgery is able to realize 0 degree or shallow bevel and precise length of root resection, and minimize the longitudinal width of osteotomy. The crown-to-root ratio is not valid in evaluating the prosthodontic prognosis of the apically resected teeth. Accurate execution of endodontic microsurgery to preserve the buccal bone is essential to avoid endo-perio communication.

Root proximity of the anchoring miniscrews of orthodontic miniplates in the mandibular incisal area: Cone-beam computed tomographic analysis

  • Jeong, Do-Min;Oh, Song Hee;Choo, HyeRan;Choi, Yong-Suk;Kim, Seong-Hun;Lee, Jin-Suk;Hwang, Eui-Hwan
    • The korean journal of orthodontics
    • /
    • v.51 no.4
    • /
    • pp.231-240
    • /
    • 2021
  • Objective: This outcome analysis study evaluated the actual positions of the orthodontic miniplate and miniplate anchoring screws (MPASs) and the risk factors affecting adjacent anatomic structures after miniplate placement in the mandibular incisal area. Methods: Cone-beam computed tomographic images of 97 orthodontic miniplates and their 194 MPASs (diameter, 1.5 mm; length, 4 mm) in patients whose miniplates provided sufficient clinical stability for orthodontic treatment were retrospectively reviewed. For evaluating the actual positions of the miniplates and analyzing the risk factors, including the effects on adjacent roots, MPAS placement height (PH), placement depth (PD), plate angle (PA), mental fossa angle (MA), and root proximity were assessed using the paired t-test, analysis of variance, and generalized linear model and regression analyses. Results: The mean PDs of MPASs at positions 1 (P1) and 2 (P2) were 2.01 mm and 2.23 mm, respectively. PA was significantly higher in the Class III malocclusion group than in the other groups. PH was positively correlated with MA and PD at P1. Of the 97 MPASs at P1, 49 were in the no-root area and 48 in the dentulous area; moreover, 19 showed a degree of root contact (19.6%) without root perforation. All MPASs at P2 were in the no-root area. Conclusions: Positioning the miniplate head approximately 1 mm lower than the mucogingival junction is highly likely to provide sufficient PH for the P1-MPASs to be placed in the no-root area.

Dynamic Characteristic Study of Hingeless Blade Stiffness Reinforcement for Bearingless Rotor Whirl Tower Test (무베어링 로터 훨타워 시험을 위한 무힌지 블레이드 강성보강에 따른 동특성 연구)

  • Kim, Taejoo;Yun, Chulyong;Kee, Youngjoong;Kim, Seung-Ho;Jung, Sungnam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.105-111
    • /
    • 2013
  • Whirl tower test is conducted basically during helicopter rotor system development process. And for whirl tower test of rotor hub system, new design blade or existing blade which is remodeled for new rotor hub system is used. Because of simple shape and efficient aerodynamic characteristic, BO-105 helicopter blade is used for helicopter rotor hub development project widely. Originally BO-105 blade is used for hingeless hub system and blade root is used to flexure. So flap stiffness and lag stiffness at blade root area is relatively low compare with airfoil area. So, in order to apply the BO-105 blade to bearingless hub, blade root area have to be reinforced. And in this process, blade root area's section property is changed. In this paper, we suggest reinforcement method of BO-105 blade root area and study dynamic characteristic of bearingless rotor system with reinforcement BO-105 blade.