• Title/Summary/Keyword: root and leaves

Search Result 920, Processing Time 0.026 seconds

Effects of Culture Media and Growth Regulators on Callus Culture in Quercus Species (참나무류(類)의 Callus배양(培養)에 있어서 배지(培地) 및 식물생장조절물질(植物生長調節物質)의 영향(影響))

  • Lee, Jae Soon;Kim, Chi Moon
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.213-231
    • /
    • 1987
  • For callus culture of leaves and internodal tissue of Quercus acutissirna Carr. and Quercus variabitisBL, MS and GD media were supplemented with combinations of different levels of growth substances such as NAA and BAP, NAA and kinetin, 2,4-D and BAP, and 2,4-D and kinetin. The results were obtained as follows; 1. The rates of formation and growth of callus were good on the GD medium supplemented with NAA and BAP, but the values were quite variable on the MS medium. Root formation occurred at the ratio of 1 : 10-100 in the concentrations of BAP and NAA. 2. The GD medium supplemented with the combination of NAA and kinetin showed 100% callus formation. The callus grew well on the other medium except for that with low concentration of NAA and kinetin. Most of roots were developed from leaf tissue cultured on GD media. 3. The GD medium supplemented with the combination of 2,4-D and BAP also showed 100% callus formation, and growth of callus was good on both of MS and GD media. In particular, the callus derived from internodal tissue showed. the most vigorous growth and reached above 22mm diameter, when they were cultured on MS media supplemented wi th the combinations of $10{\mu}M$ 2,4-D and $1.0{\mu}M$ BAP, and $10{\mu}M$ 2,4-D and $0.1{\mu}M$ BAP. 4. The GD medium supplemented with the combination of 2,4-D and kinetin showed high rate of callus formation, as compared with MS medium Callus grew well on both of MS and GD media.

  • PDF

Investigation of the Rice Plant Transfer and the Leaching Characteristics of Copper and Lead for the Stabilization Process with a Pilot Scale Test (논토양 안정화 현장 실증 시험을 통한 납, 구리의 용출 저감 및 벼로의 식물전이 특성 규명)

  • Lee, Ha-Jung;Lee, Min-Hee
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.255-264
    • /
    • 2012
  • The stabilization using limestone ($CaCO_3$) and steel making slag as the immobilization amendments for Cu and Pb contaminated farmland soils was investigated by batch tests, continuous column experiments and the pilot scale feasibility study with 4 testing grounds at the contaminated site. From the results of batch experiment, the amendment with the mixture of 3% of limestone and 2% of steel making slag reduced more than 85% of Cu and Pb compared with the soil without amendment. The acryl column (1 m in length and 15 cm in diameter) equipped with valves, tubes and a sprinkler was used for the continuous column experiments. Without the amendment, the Pb concentration of the leachate from the column maintained higher than 0.1 mg/L (groundwater tolerance limit). However, the amendment with 3% limestone and 2% steel making slag reduced more than 60% of Pb leaching concentration within 1 year and the Pb concentration of leachate maintained below 0.04 mg/L. For the testing ground without the amendment, the Pb and Cu concentrations of soil water after 60 days incubation were 0.38 mg/L and 0.69 mg/l, respectively, suggesting that the continuous leaching of Cu and Pb may occur from the site. For the testing ground amended with mixture of 3% of limestone + 2% of steel making slag, no water soluble Pb and Cu were detected after 20 days incubation. For all testing grounds, the ratio of Pb and Cu transfer to plant showed as following: root > leaves(including stem) > rice grain. The amendment with limestone and steel making slag reduced more than 75% Pb and Cu transfer to plant comparing with no amendment. The results of this study showed that the amendment with mixture of limestone and steel making slag decreases not only the leaching of heavy metals but also the plant transfer from the soil.

Effects of Daylength Extension by Red Light in Strawberry Cultivation (적색광에 의한 딸기재배의 일장연장 효과)

  • Hong, Seung-Chang;Kim, Min-Kyeong;Kim, Myung-Hyun;Choe, Soon-Kun;Eo, Jin-Woo;Jung, Goo-Bok;So, Kyu-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.358-363
    • /
    • 2014
  • BACKGROUND: Many strawberry growers are utilizing daylength extension by using incandescent bulb or fluorescent lamp to break dormancy of strawberry induced by low temperature and short day conditions. Conventional incandescent bulb and fluorescent lamp consume a lot of electricity and have short longevity. Red light known for most efficient wavelength for daylength extension light of short-day plant and long-day plant. This study was conducted to verify the effects of red light to enhance growth and to increase production of strawberry (Fragaria ${\times}$ ananassa Duch. cvs. "Seolhyang") METHODS AND RESULTS: Three red light (660nm) of 0.70, 0.87, and $1.05{\mu}mol/m^2/s$ (PAR) and conventional incandescent bulb of 40 Lux were treated respectively under the pot experiment. All treatment irradiated from 18:00 to 24:00 for 6 hours. Red light treatment tend to increase leaf stem number, flower stem number, weight of flower stem, crown weight, root weight, and leaf area of strawberry then incandescent bulb treatment. In field experiment, red light of $0.7{\mu}mol/m^2/s$ (PAR) and conventional incandescent bulb of 40 Lux were irradiated respectively. Field experiment showed that the leaf number, leaf weight, and crown weight of strawberry increased than those of incandescent bulb control with red LED of $0.7{\mu}mol/m^2/s$ (PAR). Red LED treatment increased the fruit number over 15g than incandescent bulb. Furthermore, red LED treatment decreased fruit number below 15g of strawberry than incandescent bulb treatment. Therefore, We believed that red LED treatment increased marketable fruit number by increment of weight of each fruit. Consequently, marketable fruit number, fruit weight, and fruit production of strawberry were increased than those of incandescent bulb by 5 %, 2.9 %, and 8.5 % respectively, but not showed significantly differences. CONCLUSION: These results presumably due to directly enhanced photosynthesis of strawberry leaves and activated action of Pfr phytochrome form by red light. In conclusion, red LED of 660nm could be used for daylength extension light source to enhance production of strawberry.

Germination Responses and Early Growth of Allium thunbergii by Temperature and Shading Level (온도와 차광수준에 따른 산부추의 발아반응 및 초기생육)

  • Jeon, Kwon-Seok;Song, Ki-Seon;Choi, Kyu-Seong;Kim, Chang-Hwan;Park, Yong-Bae;Kim, Jong-Jin
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.178-186
    • /
    • 2015
  • This study was carried out to determine the effects of environment controls (temperature and shading level) on germination responses and early growth of Allium thunbergii. Germination experiment was performed by pre-treatment (with low temperature and wetting treatments for 0, 20, 40 and 60 days) and temperature controls (5, 10, 15, 20, 25 and 30). And growth experiment was performed by containers (128 and 200 cavities containers) and shading level (full sunlight (control), 35%, 50% and 75% shading). Germination rate of A. thunbergii seeds were, 20 days of seed pre-treatment, the highest at $10^{\circ}C$ (81.7%) and the more temperature went up, the more germination rate went down. As a result of surveying container and shading treatments, the height, leaf area, leaf length, leaf aspect ratio (L/W) were higher under 50% shading of 128 (24.2cm, $2.76cm^2$, 22.3cm and 223.4, respectively) and 200 (22.6cm, $2.29cm^2$, 19.4cm and 190.5, respectively) cavities container. The root was grown well under full sunlight. Specially, fresh weight of shoot (leaves+stem) was higher under 50% shading of 128 (0.241g) and 200 (0.212g) cavities container. As a result of surveying the whole experiment, A. thunbergii seeds need to pre-treatment (with low temperature and wetting treatments for 20~40 days) for high germination rate. And it is judged better growth and higher yield by maintaining 50% shading of 200 cavities container.

Development of Optimal Nutrient Solution of Tomato(Lycopercicon esculentum Mill.) in a Closed Soilless Culture System (순환식 수경재배에 적합한 토마토 배양액 개발)

  • Yu, Sung-Oh;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.203-211
    • /
    • 2005
  • The experiment was conducted to investigate the nutrition absorption pattern in the growth stages and develope the optimal nutrient solution hydroponically grown the tomato in closed substrate culture system with the nutrient solution of National Horticultural Research Station in Japan into 1/2S, 1 S, and 2S. When plant was grown in 1/2 S, the growth and yield were high and the pH and EC in the rooting zone were stable. Suitable composition of nutrient solution for tomato was $NO_3-N$ 7.1, $PO_{4}$-P 2.1, K 4.0, Ca 3.1, Mg 1.2, and $SO_{4}-S\;1.2\;me{\cdot}L^{-1}$ in the early growth stage and $NO_3-N$ 6.5, $PO_4-P$ 2.3, K 3.4, Ca 3.1, Mg 1.1, and $SO_4-S\;1.1\;me{\cdot}L^{-1}$ in the late growth stage by calculating a rate of nutrient and water uptake. To estimate the suitability for the nutrient solution of tomato in a development of optimum nutrient solution of tomato developed by Wonkwang university in korea (WU), plant was grown in perlite substrate supplied with different solution and strengths(S) by research station for greenhouse vegetable and floricultuin in the Netherlands (Proefstation voor tuinbouw onder glas te Naaldwijk; PTG) of 1/2 S, 1 S and 2 S, respectively, The growth was good at the PTG and WU of 2 S in early growth stage, and at the WU 2S in late growth stage. The highest yield of tomato obtained in the WU of 2 S, although blossom-end rot was appeared in all treatments. pH and EC in root zone of WU of 2 S were stable during the early and late growth stage. Therefore when plant was grown in WU of 2 S, N and P content in the nutrient solution need to low, according N and P content of their leaves were high in WU of 2 S.

Effects of Depth and Duration of Flooding on Growth and Yield at Flowering Stage in Tomato(Lycopersicon esculentum). (토마토(Lycopersicon esculentum)의 개화기 침수 처리에 따른 생육 반응)

  • Guh, Ja-Ock;Han, Sung-Uk;Kuk, Yong-In;Chon, Sang-Uk;Lee, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.130-135
    • /
    • 1997
  • Tomatoes are flooded differently 0, 5, 10 and 15cm, according to the developing stages such as flowering stage under the condition of greenhouse. Along with this, they are treated according to the time condition such as 6, 12, 24, 48 and 120 hours. The results obtained are summarized as follows. Plant height decreased in the depth of $0{\sim}10cm$ for over 48 hours, in the depth of 15cm for over 24 hours. Number of leaves was the same as in control, and it decreased over. Number of flowers and fruit setting of individuals decreased conspicuously according as the depth and the hours got greater and longer. Adventitious root occurred remarkably in the depth of $0{\sim}10cm$, for over 24 hours and in the depth of 15cm, 12 hours. Epinastic curvature increased greatly as the depth and the hours got greater and longer. Diffusion resistance of stomata cell increased as the depth and the hours got greater and longer. Diseases occurred conspicuously as the hours of flooding got longer rather than as the depth greater. The preventing of diseases caused by insecticide was observed, but it was not greater than in the seedling and transplanting stage. Fertilization was effective in the case of increasing the weight of shoot. Number of fruits per plant did not decrease in the depth of 0cm up to 24 hours, but decreased on the deeper level of flooding and increased as the hours got longer. Moreover with the exception of 120 hours per respective depth of the treatment, average weight of a fruit got greater as the depth and the hours got greater and longer. In the case of epinastic curvature and diffusion resistance, there was negative correlation between all the other investigated characters and positive correlation between weight of a fruits and average weight of a fruit.

  • PDF

Studies on the Improvement of Mountainous Pasture I. Effect of the various litters on germination , establishment , and herbage production of oversown grasses (산지초지 개량에 관한 연구 I. 낙엽퇴적물이 겉뿌린 목초의 발아 , 정착 및 수량에 미치는 영향)

  • 이인덕
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.4 no.1
    • /
    • pp.35-40
    • /
    • 1983
  • This study was conducted to investigate the effect of some kinds of tree litters covered the soil surface on the germination, establishment, sward composition, and herbage production of the grasses sown by the oversowing method. The litters were leaves of Pinus rigida Miller, Quercus variabilis Blume, Larix leptolepis Gord, and Alnus hirsuta Rupr. The results obtained were as follows; 1. In the Petri dish, germination was affected by grass species and kinds of litters, especially the percolate from Pinus litter seriously suppressed the early germination of small size seeds such as ladino clover and timothy. 2. In the pot, establishment was slightly suppressed in ladino and timothy by the percolate from Pinus litter, while in others it was decreased relatively. 3. Among the 6 species investigated, the small size seeds of ladino clover and timothy and the large size seeds of red clover, they could be early put into the litter spaces and established well. 4. In Larix litter, the establishment percentage of all species were decreased seriously owing to low moisture retention capacity. 5. Grass height and root length were different in kinds of litters and species. 6. The percentages of establishment on each surface treatments of burning, treading, raking, and the control under Quercus tree were 36, 46, 37, and 31%, respectively. 7. The sward percentage of oversown grasses and legumes was 57.8% in burning, 70.9% in treading, 59.6% in raking, and 54.0% in the control. 8. Treading treatment was most effective to destroy existing vegetation and improve soil-seed contact when oversowing and showed the best result. 9. Yield of dry matter per unit area in treading treatment was higher (p<0.05) than those of the other treatments. The above experimental results suggest the importance of direct oversowing on the litters in the mountainous land and forest land.

  • PDF

Effects of Temperature and Light Intensity on the Growth of Red Pepper(Capsicum annuum L.) in Plastic House During Winter. II. Effects of Temperature and Light Environment on the Early Growth and Yield of Red Pepper under the Multilayered Covering in Non - heated Plastic House (동계 Plastic house내 고추(Capsicum annuum L.) 육묘시 온도와 광도가 생장에 미치는 영향 II. 무가온 다중피복 시설내 온도 및 광환경이 고추의 유묘생장 및 수량에 미치는 영향)

  • 정순주;이범선;권용웅
    • Journal of Bio-Environment Control
    • /
    • v.3 no.2
    • /
    • pp.119-127
    • /
    • 1994
  • This study was conducted to investigate the effects of temperature and light conditions on the vigor and growth responses of red pepper(Capsicum annuum L.) seedlings in the nonheated plastic houses with triple and quadruple coverings during winter. The results obtained were as follows ; 1. The growth in terms of plant height, number of leaves, leaf area and dry weight of each organ was reduced up to 50% in the triple coverings compared to quadruple ones. The greatest difference between the triple coverings and quadruple ones was the leaf area, showing two to five times larger in the quadruple ones. Therefore, the differences of the early environmental conditions during raising seedling stage was well reflected. 2. The leaf expansion in the early stage of seedling was delayed in the triple coverings and subsequently crop growth rate(CGR) significantly reduced. The specific leaf area (SLA) in the triple coverings was less than quadruple ones. The net assimilation rate (NAR) was increased in the early stage of seedlings and then reduced in the quadruple coverings. In triple ones, however, the great reduction showed at six weeks after sowing and then increased sharply. 3. The linear relationship among leaf area, total dry weight and leaf dry weight was observed in the all experimental areas, while between leaf area and crop growth rate only in the quadruple coverings, and between leaf area and net assimilation rate in both triple and quadruple ones. 4. The dry matter partitioned to the leaf increased up to six weeks after sowing in the triple coverings but reduced in the stem and root. However, the adverse results were obtained in the quadruple ones. 5. In the triple coverings, the number of branches showed the exponential increment while fruit weight showed linear increment in both triple and quadruple ones. Higher yield was obtained in the quadruple ones. 6. The shoot dry weight among the characteristics of seedlings was greatly contributed to the yield of red pepper after transplanting. Accordingly, one of the decisive criterion for good quality of red pepper seedlings was determined by the highest correlation between shoot dry weight of growing plant and fruit yield of pepper plant.

  • PDF

Vegetation Distribution Near Abandoned Metalliferous Mines and Seed Germination Properties of Woody Plants by the Contaminated Soils (폐광산 주변의 목본 식생 현황 및 오염 토양에 대한 목본 종자의 발아 특성)

  • Seo, Kyung-Won;Kim, Rae-Hyun;Koo, Jin-Woo;Noh, Nam-Jin;Kyung, Ji-Hyun;Kim, Jeong-Gyu;Son, Yo-Whan
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.47-57
    • /
    • 2006
  • This study was carried out to select the Eco-tree for successful phytoremediation of abandoned metalliferous mines. We examined vegetation and heavy metal concentrations of woody plants in abandoned mining areas, and also conducted seed germination and seedling growth experiment on contaminated soils from Gahak and Geumjeong mines. Pinus densiflora, Robinia pseudoacacia, Lespedeza bicolor and Alnus japonica showed high frequency in the survey areas and had high heavy metal concentrations compared to other species. Heavy metal concentrations were higher in roots than in leaves and stems. The seed germination rate was in the order of P. densiflora, L. bicolor, R. pseudoacacia, and Alnus japonica from the incubactor and greenhouse experiment. In the incubator experiment germination rate was highest in the control soil for P. densiflora and A. japonica. Germination rate of P. densiflora was highest on the 100% contaminated soil for Gahak mine while germination rate decreased with increased percentage of contaminated soil for Geumjeong mine. In the greenhouse experiment germination rate was lowest on the 40% contaminated soil for Gahak mine while germination rate was lowest on the 20% contaminated soil for Geumjeong mine and increased with increased percentage of contaminated soil. Shoot growth was highest for L. bicolor while root growth was highest for R. pseudoacacia except for 20% contaminated soil in Geumjeong mine.

Effects of Elevated Atmospheric CO2 and Nitrogen Fertilization on Growth and Carbon Uptake of Yellow Poplar Seedlings (대기 이산화탄소 증가와 질소 시비가 백합나무 유묘의 생장과 탄소 흡수에 미치는 영향)

  • Chung, Mi-Sook;Han, Sim-Hee;Kim, Du-Hyun;Lee, Jae-Cheon;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.108-118
    • /
    • 2012
  • To investigate the responses of yellow poplar (Liriodendron tulipifera L.) seedlings to the interactive effects of the elevated atmospheric $CO_2$ level and nitrogen addition, we measured biomass, photosynthetic pigments, photosynthesis, and the contents of nitrogen (N) and carbon (C) from the seedlings after 16 weeks of the treatments. Yellow poplar seedlings were grown under the ambient ($400{\mu}mol\;mol^{-1}$) and the elevated (560 and $720{\mu}mol\;mol^{-1}$) CO2 concentratoins with three different N addition levels (1.2, 2.4, and $3.6g\;kg^{-1}$) in the Open Top Chambers (OTC). The dry weight of the seedlings enhanced with the increased N levels under the elevated $CO_2$ concentrations and the increment of the dry weight differed among the different N levels. Photosynthetic pigment content of the yellow poplar leaves also increased with the increase of the $CO_2$ concentration levels. The effects of the N levels on the photosynthetic pigment content, however, were significantly different among the $CO_2$ levels. Photosynthetic rates were affected by the levels of $CO_2$ and N concentrations. Stomatal conductance and transpiration rates increased with increasing $CO_2$ concentration. The carboxylation efficiency of the seedlings without N addition increased under the higher $CO_2$ concentrations whereas that with N addition decreased under the elevated $CO_2$ concentrations. Nitrogen and carbon uptake in leaf, stem, and root increased with the elevated $CO_2$ concentration level and N addition. In conclusion, under the elevated $CO_2$ concentrations, physiological characteristics and carbon uptake of the yellow poplar seedling were improved and increased with N addition.