• Title/Summary/Keyword: room strain

Search Result 422, Processing Time 0.031 seconds

Effect of Cations on Resting Potential and Pump Activity of Unfertilized Mouse Eggs (Mouse Egg의 안정막전압과 Pump 활동에 대한 양이온의 효과)

  • Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.23 no.1
    • /
    • pp.35-42
    • /
    • 1989
  • The present study was performed to observe the effects of cations on resting membrane potential and pump activity in the unfertilized eggs of ICR strain mice. After an induction of superovulation, the fresh eggs with zona pellucida were collected and the membrane potentials were recorded. Recordings of membrane potential in this study was obtained from the physiological conditions ($37^{\circ}C$ and 4mM Ca in standard solution), differently from the another reports with unphysiological conditions (room temprature and high Ca in standard solution) for a stable and long-lasting observations. Presented data was obtained within 6 hours after collection from the oviduct. The results observed are as follows, 1) Resting potential of the unfertilized eggs was $-25.8{\pm}3.8mV$ $(Mean{\pm}Se,\;n=31)$. 2) As the K ion concentration was increased, resting membrane potential was depolarized but showed hyperpolarization with $K^{+}$ below 25mM. 3) Alteration of the resting membrane potential for the changes of $Na^{+}$ concentration were hardly observed, while resting potential was hyperpolarized as $Ca^{2+}$ concentration was increased. 4) Pump activity as transient or prolonged hyperpolarization was $-2.29{\pm}0.75mV$ $(Mean{\pm}Se,\;n=16)$, the hyperpolarization was increased in both amplitude and duration under the 10mM $Ca^{2+}$ solution. 5) Hyperpolarization due to pump activity was decreased or disappeared by $5{\times}10^{-5}\;M$ ouabain treatment and could not be observed under the both Na-free and Ca-free solutions. 6) Above results are likely to suggest that the resting potential of the mouse unfertilized eggs is affected to mainly by Ca-dependent K conductance and Na-Ca exchange mechanism and that there is pump activity coupling between $K{+}$, $Na^{+}$ and $Ca^{2+}$.

  • PDF

Effect of Fabrication Methods on Static Strength of Polymer Based Composites under the Low Temperature Range (적층 방법에 따른 복합재의 저온 영역 하에서 정적 강도 변화)

  • Eom, Su-Hyeon;Dutta, Piyush K.;Gwon, Sun-Cheol;Kim, Guk-Jin;Kim, Yun-Hae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.7-12
    • /
    • 2003
  • When the wind turbine is used in cold regions, the mechanical properties and dimension stability of the blade will be changed. The proposal of this paper is to test the durability of the blade for wind turbine. It is necessary to select the most comfortable materials and fabrication processes for more stable wind turbine blade in cold regions. To select the most comfortable materials and processes, the static strength has to know through the tensile static tests at the severe condition as cold regions. First, the tensile static specimens made by RIM (Resin injection molding) process & vacuum bagging process with reinforcement materials and resin. Tensile static tests were carried out on three laminate lay-ups (carbon prepreg, carbon fiber dry fabric and glass fiber dry fabric) at different test temperature($24^{\circ}$, $-30^{\circ}$), determining properties such as the mechanical strength, stiffness and strain to failure. At different test temperature, in order to test the tensile strengths of these specimens used the low temperature chamber. Next, the results of this test were compared with each other. Finally, the most comfortable materials and fabrication processes can select based on these results. The results show the changes in the static behavior of three laminate lay-ups at different test temperatures. At low temperatures, the static strengths are higher than the ones at room temperature.

  • PDF

Effect of Aging Treatment on the Microstructure and Low Temperature Tensile Properties in 5083 Aluminum Alloy Weldments (5083 Al합금 용접재의 조직 및 저온 인장성질메 미치는 시효처리의 영향)

  • Lee, T.C.;Lee, H.W.;Joo, D.W.;Lee, J.H.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • The microstructural characteristics and low temperature tensile properties between $25^{\circ}C$ and $-196^{\circ}C$ for as-welded and age hardened specimen by using Al 5083-H321 for base metal, 5083-5356 and 5083-4043 weldments have been investigated. The hardness of 5083-5356 weldment decreases with aging treatment, whereas the weld region of 5083-4043 weldment shows remarkable increase in hardness after aging due to the precipitation of fine Si particle at the grain boundaries and interiors. Low temperature tensile properties of 5083 AI base metal, 5083-5356 and 5083-4043 weldments appear to be the increment of tensile strengths and elongations at the room temperature and $-196^{\circ}C$, while the decrement of tensile properties around $-50^{\circ}C$ is shown. Through the observation of fine serration to fracture in the stress-strain curve and tensile fractography, the increment of localized deformation leading to promote the neck initiation and the increment of the dimple size cause to decrease in tensile strengths and elongations around $-50^{\circ}C$. For the tensile specimen of the 5083 base metal, 5083-5356 and 5083-4043 weldments, the reason to increase in elongation after solution and aging treatment is the diminishment of fine pit, the resolution of Mg into the matrix and the spheridization of the eutectic Si.

  • PDF

Evaluation on Mechanical Properties of a Smart Composite Using the finite Element Method and the Acoustic Emission Technique (FEM과 AE를 이용한 지적복합재료의 기계적특성 평가)

  • Park, Young-Chul;Lee, Jin-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.233-239
    • /
    • 2004
  • Smart material is used in various applications such as for glass frame, for medical instruments and for a part of sensors. Smart composite materials ran be applied to a part of aircraft and to the on-line monitoring system for industrial structures, using the shape memory effect. However, it is very difficult to simulate and analyze the shape memory effect in smart composites. In this paper, a two dimensional axisymmetric model was proposed to analyze the smart composite of one fiber and matrix using the finite element method(FEM). The finite element analysis was carried out in two renditions of the room temperature(293K) and a higher temperature (363K). The results we.e compared with the experimental results to confirm the validity of the analysis. In addition, the acoustic emission(AE) technique was used to study the microscopic damage behavior and the effect of pre-strains on TiNi/A16061 shape memory alloy composite.

A Study on the Accelerated Life Test of Rubber Specimens by using Stress Relaxation (응력완화를 이용한 고무시편의 가속수명시험 연구)

  • Lee, Su-Yeong;You, Ji Hye;Lee, Yong-Sung;Kim, Hong Seok;Cheong, Seong-Kyun;Shin, Ki-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • Rubber parts are widely used in many applications such as dampers, shock absorbers, and seals used in railway and automotive industries. Much research has thus far been conducted on property estimation and life prediction of rubber parts. To predict the service life of rubber parts at room temperature, most prior work adopts the well-known Arrhenius model that needs the accelerated life test in high-temperature conditions. However, they may not reflect the actual conditions of use that rubber parts are usually used under a specific strain condition during long period of time. In this context, we propose a method for the life prediction of rubber parts in actual conditions of use. The proposed method is based on the accelerated life test using stress relaxation during which three relatively high elongation percentages (100%, 200%, and 300%) are applied to the rubber specimens. Rubber specimens were prepared in accordance with KS M 6518 standard and three stress relaxation testers were fabricated for actual experiments. Finally, a inverse power model for life prediction was derived from experimental results. The predicted life was compared with the actual test life for validation.

A Comparison of the Effect of Fabrication Methods on Static Strength of Polymer Based Composites under the Low Temperature Range (적층 방법에 따른 고분자 기지 복합재의 저온 영역 하에서 정적 강도 변화의 비교)

  • ;;;Piyush K. Dutta
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.196-201
    • /
    • 2003
  • When the structures are used in cold regions, the mechanical properties and dimension stability of the blade will be changed. The proposal of this study is to test the durability of the structures in cold regions. It is necessary to select the most comfortable materials and fabrication processes for more stable structures in cold regions. To select the most comfortable materials and processes, the static strength has to know through the tensile static tests at the severe condition as cold regions. First, the tensile static specimens made by RIM (Resin injection molding) process & vacuum bagging process with reinforcement materials and resin. Tensile static tests were carried out on three laminate lay-ups (carbon prepreg, carbon fiber dry fabric) at different test temperature($24^{\circ}C$, $-30^{\circ}C$), determining properties such as the mechanical strength, stiffness and strain to failure. At different test temperature, in order to test the tensile strengths of these specimens used the low temperature chamber. Next, the results of this test were compared with each other. Finally, the most comfortable materials and fabrication processes can select based on these results. The results show the changes in the static behavior of three laminate lay-ups at different test temperatures. At low temperatures, the static strengths are higher than the ones at room temperature.

  • PDF

Isoliquiritigenin attenuates spinal tuberculosis through inhibiting immune response in a New Zealand white rabbit model

  • Wang, Wenjing;Yang, Baozhi;Cui, Yong;Zhan, Ying
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.4
    • /
    • pp.369-377
    • /
    • 2018
  • Spinal tuberculosis (ST) is the tuberculosis caused by Mycobacterium tuberculosis (Mtb) infections in spinal curds. Isoliquiritigenin (4,2',4'-trihydroxychalcone, ISL) is an anti-inflammatory flavonoid derived from licorice (Glycyrrhiza uralensis), a Chinese traditional medicine. In this study, we evaluated the potential of ISL in treating ST in New Zealand white rabbit models. In the model, rabbits (n=40) were infected with Mtb strain H37Rv or not in their $6^{th}$ lumbar vertebral bodies. Since the day of infection, rabbits were treated with 20 mg/kg and 100 mg/kg of ISL respectively. After 10 weeks of treatments, the adjacent vertebral bone tissues of rabbits were analyzed through Hematoxylin-Eosin staining. The relative expression of Monocyte chemoattractant protein-1 (MCP-1/CCL2), transcription factor ${\kappa}B$ ($NF-{\kappa}B$) p65 in lymphocytes were verified through reverse transcription quantitative real-time PCR (RT-qPCR), western blotting and enzyme-linked immunosorbent assays (ELISA). The serum level of interleukin (IL)-2, IL-4, IL-10 and interferon ${\gamma}$ ($IFN-{\gamma}$) were evaluated through ELISA. The effects of ISL on the phosphorylation of $I{\kappa}B{\alpha}$, $IKK{\alpha}/{\beta}$ and p65 in $NF-{\kappa}B$ signaling pathways were assessed through western blotting. In the results, ISL has been shown to effectively attenuate the granulation inside adjacent vertebral tissues. The relative level of MCP-1, p65 and IL-4 and IL-10 were retrieved. $NF-{\kappa}B$ signaling was inhibited, in which the phosphorylation of p65, $I{\kappa}B{\alpha}$ and $IKK{\alpha}/{\beta}$ were suppressed whereas the level of $I{\kappa}B{\alpha}$ were elevated. In conclusion, ISL might be an effective drug that inhibited the formation of granulomas through downregulating MCP-1, $NF-{\kappa}B$, IL-4 and IL-10 in treating ST.

Wedge Splitting Test and Fracture Energy on Particulate Reinforced Composites (입자강화 복합재료의 쐐기분열시험 및 파괴에너지 평가)

  • Na, Seong Hyeon;Kim, Jae Hoon;Choi, Hoon Seok;Park, Jae Beom;Kim, Shin Hoe;Jung, Gyoo Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.253-258
    • /
    • 2016
  • The effect of temperature on the fracture energy, crack propagation, and crack tip opening displacement (CTOD) was determined for particulate reinforced composites using the wedge splitting test. The materials that were used consisted of a polymer binder, an oxidizing agent, and aluminum particles. The test rate of the wedge splitting specimen was 50 mm/min, the temperature conditions were $50^{\circ}C$, room temperature, $-40^{\circ}C$, and $-60^{\circ}C$. The fracture energy, calculated from splitting load-crack mouth opening displacement(CMOD) curves, increased with decreasing temperature from $50^{\circ}C$ to $-40^{\circ}C$. In addition, the strength of the particulate reinforced composites increased sharply at $-60^{\circ}C$, and the composites evidenced brittle fracture due to the glass transition temperature. The strain fields near the crack tip were analyzed using digital image correlation.

Studies on the Biological Properties of Nocardia Brasiliensis Isolated from Pus (Nocardia brasiliensis의 분리(分離) 및 생물학적(生物學的) 성상(性狀)에 관(關)하여)

  • Suk, Jong-Sung;Lee, Jae-Chul;Lee, Sung-Hoon
    • The Journal of the Korean Society for Microbiology
    • /
    • v.10 no.1
    • /
    • pp.25-32
    • /
    • 1975
  • The majority of Nocardial infections reported in North America areIN. ;asteroides while those in Latin America are N. brasiliensis species. Infection with N. brasiliensis, to our knowledge, has not previously been reported in Korea. The auther isolated one strain of Nocardia brasiliensis from the abscess of right bottock of 23 month old female leukemic patient who was treated with methotrixate for five months at the Seoul National University Hospital. The morphological characteristics and biological properties were similar with the R.E. Gordon's description. The results are summarized as follow: 1. After 5 days incubation on Sabouroud's glucose agar, the acid fast character appeared partially. 2. Tyrosine, casein and urea were decomposed by 7 days incubation both at room temperature and at $37^{\circ}C$. 3. Sod, citrate and sod. acetate were utilized at $22^{\circ}C\;and\;37^{\circ}C$ after 28 days incubation while the sod. benzoate utilization was negative. 4. The survival range of temperature was from $10^{\circ}C\;to\;40^{\circ}C$. 5. Dulcitol, galactose, glycerol, lactose, maltose, mannitol, raffinose, rhamnose, sorbitol, trehalose and xylose fermentations were not observed up to 28 days, while the fermentation of glucose and inositol were positive.

  • PDF

Evaluation of spring shape effect on the nuclear fuel fretting using worn area (핵연료 프레팅 마멸에서 마멸면적을 이용한 스프링 형상 영향 평가)

  • Lee Young-Ho;Kim Hyung-Kyu;Jung Youn-Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.313-323
    • /
    • 2003
  • The sliding wear behaviors of Zircaloy-4 nuclear fuel rod were investigated using two support springs with convex and concave shapes in room temperature air and water. The main focus is to compare the wear behavior of various test variables such as slip amplitude, environment, contact contours with different spring shape and a number of cycles. The results indicated that wear volume and maximum wear depth increased with slip amplitude in both air and water, but their trends tended to change according to the spring shapes and test environments. In air condition, the wear volume was controlled by wear debris behavior generated on worn surface. As a result, final wear volume and maximum wear depth decreased if a ratio of protruded wear volume to worn area $(D_p)$ would be saturated to specific value. This is because wear particle layer could accommodate large strain by accumulating and transforming wear particle layer. However, in water condition, metal-to metal contact was more dominant and wear volume was greatly affected by changed mechanical behavior between contact surfaces since wear debris should be generated after repeated plastic deformation and fracture. After wear test, worn surfaces were examined using optical microscope and SEM and details of wear mechanism were discussed using a ratio of wear volume to worn area $(D_e)$ at each test condition.

  • PDF